Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in $ R\sb{3}$


Author: H. S. G. Swann
Journal: Trans. Amer. Math. Soc. 157 (1971), 373-397
MSC: Primary 35.79; Secondary 76.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0277929-7
MathSciNet review: 0277929
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown here that a unique solution to the Navier-Stokes equations exists in $ {R_3}$ for a small time interval independent of the viscosity and that the solutions for varying viscosities converge uniformly to a function that is a solution to the equations for ideal flow in $ {R_3}$. The existence of the solutions is shown by transforming the Navier-Stokes equations to an equivalent system solvable by applying fixed point methods with estimates derived from using semigroup theory.


References [Enhancements On Off] (What's this?)

  • [1] O. A. Ladyženskaja, Mathematical problems in the dynamics of a viscous incompressible fluid, Fizmatgiz, Moscow, 1961; English transl., Gordon and Breach, New York, 1963. MR 27 #5034a,b.
  • [2] R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216.
  • [3] T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260. MR 26 #495. MR 0142928 (26:495)
  • [4] H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269-315. MR 29 #3774. MR 0166499 (29:3774)
  • [5] K. K. Golovkin, Vanishing viscosity in Cauchy's problem for hydromechanics, Trudy Mat. Inst. Steklov. 92 (1966), 31-49 = Proc. Steklov Inst. Math. 92 (1966), 33-53. MR 34 #7097. MR 0207281 (34:7097)
  • [6] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213-231. MR 14, 327. MR 0050423 (14:327b)
  • [7] V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032-1066. MR 28 #1415. MR 0158189 (28:1415)
  • [8] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248. MR 1555394
  • [9] L. Lichtenstein, Grundlagen der Hydromechanik, Springer-Verlag, Berlin, 1929. MR 0228225 (37:3808)
  • [10] F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal. 27 (1968), 329-348. MR 36 #4870. MR 0221818 (36:4870)
  • [11] C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademie Verlag, Leipzig, 1927.
  • [12] K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 31 #5054. MR 0180824 (31:5054)
  • [13] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966, chap. 9. MR 34 #3324. MR 0203473 (34:3324)
  • [14] L. Bers, F. John and M. Schechter, Partial differential equations, Lectures in Appl. Math., vol. 3, Interscience, New York, 1964. MR 29 #346. MR 598466 (82c:35001)
  • [15] D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid, Bull. Amer. Math. Soc. 75 (1969), 962-967. MR 39 #7632. MR 0246328 (39:7632)
  • [16] J. E. Marsden, Non-linear semi-groups associated with the equations for a non-homogeneous fluid, University of California, Berkeley, Calif., 1970 (unpublished).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35.79, 76.00

Retrieve articles in all journals with MSC: 35.79, 76.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0277929-7
Keywords: Navier-Stokes equations, viscous flow, Euler equations, ideal flow, potential theory, semigroups of operators, Sobolev space, nonlinear partial differential equations
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society