Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The volume of tubes in complex projective space


Author: Robert A. Wolf
Journal: Trans. Amer. Math. Soc. 157 (1971), 347-371
MSC: Primary 57.60; Secondary 32.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0281237-8
MathSciNet review: 0281237
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A formula for the volume of a tube about a compact complex submanifold of complex projective space is derived.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Pure and Appl. Math., vol. 15, Academic Press, New York, 1964. MR 29 #6401. MR 0169148 (29:6401)
  • [2] S.-S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math. (2) 47 (1946), 85-121. MR 7, 470. MR 0015793 (7:470b)
  • [3] H. Flanders, Development of an extended exterior differential calculus, Trans. Amer. Math. Soc. 75 (1953), 311-326. MR 15, 161. MR 0057005 (15:161e)
  • [4] S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)
  • [5] H. Weyl, On the volume of tubes, Amer. J. Math. 61 (1939), 461-472. MR 1507388

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.60, 32.00

Retrieve articles in all journals with MSC: 57.60, 32.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0281237-8
Keywords: Tubes, volume, complex projective space, complex submanifold, holomorphic curvature tensor, second fundamental form
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society