Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the order of a starlike function


Authors: F. Holland and D. K. Thomas
Journal: Trans. Amer. Math. Soc. 158 (1971), 189-201
MSC: Primary 30.42
DOI: https://doi.org/10.1090/S0002-9947-1971-0277705-5
MathSciNet review: 0277705
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if $ f \in S$, the class of normalised starlike functions in the unit $ \operatorname{disc} \Delta $, then

$\displaystyle ({\text{i}})\quad \quad \mathop {\lim }\limits_{r \to 1 - } \frac... ...P_\lambda }(r)}}{{ - \log (1 - r)}} = \alpha \lambda {\text{ for }}\lambda > 0;$

$\displaystyle ({\text{ii}})\quad \quad \mathop {\lim }\limits_{r \to 1 - } \fra... ...}\vert{\vert _p}}}{{ - \log (1 - r)}} = \alpha p - 1{\text{ for }}\alpha p > 1;$

and

$\displaystyle ({\text{iii}})\quad \mathop {\lim }\limits_{r \to 1 - } \frac{{\l... ...}{{ - \log (1 - r)}} = (1 + \alpha )p - 1\quad {\text{for (1 + }}\alpha )p > 1,$

where $ {P_\lambda }(r) = \Sigma _{n = 1}^\infty {n^{\lambda - 1}}\vert{a_n}{\vert^\lambda }{r^n},({a_n})$ is the sequence of coefficients and $ \alpha $ the order of $ f$, and where

$\displaystyle \vert\vert{f_r}\vert{\vert _p} = \frac{1}{{2\pi }}\int_0^{2\pi } {\vert f(r{e^{i\theta }})} {\vert^p}d\theta .$

The results extend work of Pommerenke.

The methods of the paper yield various other results, one in particular being

$\displaystyle \mathop {\lim \sup }\limits_{n \to \infty } \frac{{{{\log }^ + }n\vert{a_n}\vert}}{{\log n}} = \alpha $

, a result which has an analogy in the theory of entire functions.

References [Enhancements On Off] (What's this?)

  • [1] J. G. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233. MR 22 #1682. MR 0110814 (22:1682)
  • [2] J. G. Clunie and Ch. Pommerenke, On the coefficients of close-to-convex univalent functions, J. London Math. Soc. 41 (1966), 161-165. MR 32 #7734. MR 0190321 (32:7734)
  • [3] G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949. MR 11, 25. MR 0030620 (11:25a)
  • [4] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math. and Math. Phys., no. 48, Cambridge Univ. Press, Cambridge, 1958. MR 21 #7302. MR 0108586 (21:7302)
  • [5] -, On functions with positive real part, J. London Math. Soc. 36 (1961), 35-48. MR 27 #311. MR 0150310 (27:311)
  • [6] R. R. London and D. K. Thomas, An area theorem for starlike functions, Proc. London Math. Soc. (3) 20 (1970), 734-748. MR 0262481 (41:7087)
  • [7] Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209-224. MR 25 #1279. MR 0137830 (25:1279)
  • [8] -, On starlike and close-to-convex functions, Proc. London Math. Soc. (3) 13 (1963), 290-304. MR 26 #2597. MR 0145061 (26:2597)
  • [9] T. B. Sheil-Small, On starlike univalent functions, Ph.D. Thesis, Imperial College, London, 1965.
  • [10] E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1960.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.42

Retrieve articles in all journals with MSC: 30.42


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0277705-5
Keywords: Starlike function, order of a starlike function, integral means, coefficient means
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society