Arcwise connectedness of semiaposyndetic plane continua

Author:
Charles L. Hagopian

Journal:
Trans. Amer. Math. Soc. **158** (1971), 161-165

MSC:
Primary 54.55

DOI:
https://doi.org/10.1090/S0002-9947-1971-0284981-1

MathSciNet review:
0284981

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper, the author proved that if a compact plane continuum contains a finite point set such that, for each point in is semi-locally-connected and not aposyndetic at , then is arcwise connected. The primary purpose of this paper is to generalize that theorem. Semiaposyndesis, a generalization of semi-local-connectedness, is defined and arcwise connectedness is established for certain semiaposyndetic plane continua.

**[1]**C. L. Hagopian,*Concerning arcwise connectedness and the existence of simple closed curves in plane continua*, Trans. Amer. Math. Soc.**147**(1970), 389-402. MR**40**#8030. MR**0254823 (40:8030)****[2]**-,*A cut point theorem for plane continua*, Duke Math. J. (to appear). MR**0284980 (44:2204)****[3]**-,*Concerning the cyclic connectivity of plane continua*, Michigan Math. J. (to appear). MR**0300248 (45:9294)****[4]**F. B. Jones,*Aposyndetic continua and certain boundary problems*, Amer. J. Math.**63**(1941), 545-553. MR**3**, 59. MR**0004771 (3:59e)****[5]**-,*A characterization of a semi-locally-connected plane continuum*, Bull. Amer. Math. Soc.**53**(1947), 170-175. MR**8**, 397. MR**0019301 (8:397e)****[6]**-,*Concerning non-aposyndetic continua*, Amer. J. Math.**70**(1948), 403-413. MR**9**, 606. MR**0025161 (9:606h)****[7]**-,*Problems in the plane*, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, Wisconsin 1955; revised 1957, pp. 70-71.**[8]**R. L. Moore,*Foundations of point set theory*, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR**0150722 (27:709)****[9]**G. T. Whyburn,*Semi-locally connected sets*, Amer. J. Math.**61**(1939), 733-749. MR**1**, 31. MR**0000182 (1:31c)****[10]**-,*Analytic topology*, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1963. MR**32**#425.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54.55

Retrieve articles in all journals with MSC: 54.55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1971-0284981-1

Keywords:
Semiaposyndesis,
semi-local-connectedness,
aposyndesis,
arcwise connected continua,
folded complementary domain

Article copyright:
© Copyright 1971
American Mathematical Society