Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Concerning a bound problem in knot theory


Author: L. B. Treybig
Journal: Trans. Amer. Math. Soc. 158 (1971), 423-436
MSC: Primary 55.20
DOI: https://doi.org/10.1090/S0002-9947-1971-0278289-8
MathSciNet review: 0278289
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper Treybig shows that if two knot functions $ f,g$ determine equivalent knots, then $ f,g$ are the ends of a simple sequence $ x$ of knot functions. In an effort to bound the length of $ x$ in terms of $ f$ and $ g$ (1) a bound is found for the moves necessary in moving one polyhedral disk onto another in the interior of a tetrahedron and (2) it is shown that two polygonal knots $ K,L$ in regular position can ``essentially'' be embedded as part of the $ 1$-skeleton of a triangulation $ T$ of a tetrahedron, where (1) all 3 cells which are unions of elements of $ T$ can be shelled and (2) the number of elements in $ T$ is determined by $ K,L$. A number of ``counting'' lemmas are proved.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, An alternative proof that $ 3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37-65. MR 20 #7269. MR 0100841 (20:7269)
  • [2] R. H. Crowell and R. H. Fox, Introduction to knot theory, Ginn, Boston, Mass., 1963. MR 26 #4348. MR 0146828 (26:4348)
  • [3] C. F. Gauss, Werke (8), Teubner, Leipzig, (1900), pp. 272, 282-286.
  • [4] M. Greendlinger, Dehn's algorithm for the word problem, Comm. Pure Appl. Math. 13 (1960), 67-83. MR 23 #A1693. MR 0124381 (23:A1693)
  • [5] -, On Dehn's algorithms for the conjugacy and word problems, with applications, Comm. Pure Appl. Math. 13 (1960), 641-677. MR 23 #A2327. MR 0125020 (23:A2327)
  • [6] -, On the word problem and the conjugacy problem, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 245-268. (Russian) MR 30 #4820. MR 0174620 (30:4820)
  • [7] J. V. Sz.-Nagy, Über ein topologisches Problem von Gauss, Math. Z. 26 (1927), 579-592. MR 1544876
  • [8] L. P. Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N. J., 1965. MR 31 #734. MR 0176462 (31:734)
  • [9] D. E. Penney, An algorithm for establishing isomorphism between tame prime knots in $ {E^3}$, Dissertation, Tulane University, New Orleans, La., 1965.
  • [10] D. E. Sanderson, Isotopy in $ 3$-manifolds. I. Isotopic deformations of $ 2$-cells and $ 3$-cells, Proc. Amer. Math. Soc. 8 (1957), 919-922. MR 19, 760. MR 0090052 (19:760d)
  • [11] -, Isotopy in $ 3$-manifolds. II. Fitting homeomorphisms by isotopy, Duke. Math. J. 26 (1959), 387-396. MR 21 #5956. MR 0107231 (21:5956)
  • [12] P. G. Tait, On knots, Scientific Paper I, Cambridge Univ. Press, London, 1898.
  • [13] L. B. Treybig, Prime mappings, Trans. Amer. Math. Soc. 130 (1968), 248-253. MR 36 #879. MR 0217790 (36:879)
  • [14] -, A characterization of the double point structure of the projection of a polygonal knot in regular position, Trans. Amer. Math. Soc. 130 (1968), 223-247. MR 36 #878. MR 0217789 (36:878)
  • [15] -, An approach to the polygonal knot problem using projections and isotopies, Trans. Amer. Math. Soc. 158 (1971), 409-421. MR 0279800 (43:5521)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55.20

Retrieve articles in all journals with MSC: 55.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0278289-8
Keywords: Polyhedron, polygonal knot, piecewise linear homeomorphism, simplicial isotopy, free cell, shelling order
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society