BOUNDED HOLOMORPHIC FUNCTIONS OF
SEVERAL COMPLEX VARIABLES. I

BY
DONG SIE KIM

Abstract. A domain of bounded holomorphy in a complex analytic manifold is a maximal domain for which every bounded holomorphic function has a bounded analytic continuation. In this paper, we show that this is a local property: if, for each boundary point of a domain, there exists a bounded holomorphic function which cannot be continued to any neighborhood of the point, then there exists a single bounded holomorphic function which cannot be continued to any neighborhood of the boundary points.

Introduction. Let X be a topological space. A subset D of X is said to be a region if it is open and if it is said to be a domain if it is open and connected. We denote by $N(p)$ a fundamental system of open neighborhoods of p, where $p \in X$.

1. Definition. Let X be a topological space and U be an open subset of X. Let $C(U)$ be the family of all continuous complex-valued functions on U, then $C(U)$ is an algebra with 1, and it is equipped with the topology of uniform convergence on compact subsets of U. For a pair of open subsets U and V in X such that $V \subseteq U$ we define $\pi_{UV}: C(U) \rightarrow C(V)$ by $\pi_{UV}f=f|V$. Let $A(U)$ be a subalgebra of $C(U)$ with 1 and we assume that $\pi_{UV}A(U) \subseteq A(V)$; then we call $A=\{A(U), \pi_{UV}\}$ a presheaf of algebras of functions. A presheaf A has the local belonging property if, for all open sets U of X and f in $C(U)$, for every $p \in U$ there is $V \in N(p)$, $V \subseteq U$, such that $f|V \in A(V)$; then $f \in A(U)$.

A sheaf A of algebras of functions is a presheaf of algebras of functions with the local belonging property. A is said to be a ringed structure on X and the pair (X, A) is said to be a ringed space. The functions in $A(U)$ are A-holomorphic functions. We note that $A(U)$ has the relative topology induced by the topology on $C(U)$.

A ringed structure A on X is an n-dimensional complex analytic structure on X if for all $x \in X$ there are $U \in N(x)$ and $f_1, \ldots, f_n \in A(U)$ such that

$$F = (f_1, \ldots, f_n): U \rightarrow \mathbb{C}^n$$
is a homeomorphism of U onto $F(U)$ with the properties: $F(U)$ is open in \mathbb{C}^n and for all W open $\subseteq U$, $(f \circ (F|W)^{-1} : f \in A(W)) = \mathcal{O}(F(W))$, where \mathcal{O} is a complex analytic structure on \mathbb{C}^n. If X is a hausdorff space we call this pair (X, A) a complex analytic manifold.

For a subset U of X, $A(U)$ is quasi-analytic if for all nonempty open subsets V of U and for f, g in $A(U)$ such that $f=g$ on V then $f=g$ on U.

We give a characterization of quasi-analyticity in terms of the hausdorffness of the topology on A in the following proposition. The proof may be found in (3).

2. Proposition. Let (X, A) be a ringed space with X a locally connected hausdorff space. Then A is hausdorff if and only if $A(U)$ is quasi-analytic for all connected subsets U of X.

Regions of bounded holomorphy.

3. Definition. Let (X, A) be a ringed space and D be a region. We define $B(D) = \{f \in A(D) : f$ is bounded on $D\}$. For a point $p \in \overline{D} - D$ (boundary of D) and $U \in N(p)$, a function $f \in B(D)$ is said to be extendable to U if there is a function $g \in B(U)$ such that $f=g$ on $D \cap U$. D is said to be a weak region of bounded holomorphy if there exists a function $f \in B(D)$ which cannot be extendable beyond the boundary of D.

A is said to be montel if for an open set U in X and $F \subseteq A(U)$ there is $M_K > 0$ such that $\|f\|_K < M_K$ for all $f \in F$ and for all compact subsets K of U; then F is relatively compact in $A(U)$.

A is c.o. complete if for all open subsets U in X, $A(U)$ is complete in the topology of uniform convergence on compact subsets of U.

We note that an analytic structure A in a complex analytic manifold (X, A) has the montel property, and it is hausdorff and c.o. complete.

We show that the weak bounded holomorphy is a local property in the following theorem.

4. Lemma. Let (X, A) be a ringed space. We assume that X is a locally compact and locally connected hausdorff space, and A is hausdorff, c.o. complete and montel. Let D be a region in X and $p \in \overline{D} - D$ such that X is first countable at p. Let B be a closed (relative to the topology of uniform convergence on D) subalgebra of $B(D)$. Then these are equivalent:

1° For every $U_n \in N(p)$ there is a function $f_n \in B$ which cannot be extended to U.

2° There is a function $f \in B$ which cannot be extended to any neighborhood of P.

Proof. It is sufficient to show that (1°) implies (2°). Let $\{U_m : m \in \mathbb{Z}_+\}$ be a countable nested basis of open neighborhood of p. Let $B_1(U_m, n) = \{f \in B : f=g|D$ where $g \in B(D \cup U_m)$ and $\|g\|_{U_m} \leq n, n \in \mathbb{Z}_+\}$. We claim that $B_2(U_m, n)$ is a closed nowhere dense subset of B. For closedness, let $\{f_k\}$ be any net in $B_1(U_m, n)$ converging uniformly on D to f. We note that $\{f_k\}$ is c.o. convergent to f. Let $\{g_k\}$ $\subseteq B(D \cup U_m)$ such that $g_k|D=f_k$, $\|g_k\|_{U_m} \leq n, k \in \mathbb{Z}_+$. $\{g_k\}$ is uniformly bounded on
compact subsets of \(D \cup U_m\). Since \(A\) is montel \(\{g_k\}\) is relatively compact in \(A(D \cup U_m)\). Thus there is a subnet \(\{g_k\} \subseteq \{g_k\}\) which converges to \(g \in A(D \cup U_m)\). Now \(\lim_{c.o.} g_j|D = \lim_{c.o.} f_j = f\), so \(g_j|D = f\) and since \(\|g_j\|_V \leq n\) for \(j \in \mathbb{Z}^+\), \(\|g\|_V \leq n\), which concludes that \(f \in B_1(U_m, n)\). For nowhere denseness, let \(B_1(U_m, n) = \bigcup_n B_1(U_m, n)\). Take \(f \in B - B_1(U_m)\) and define \(g_j = j^{-1}f + h\) for \(h \in B_1(U_m, n)\), \(j \in \mathbb{Z}^+\). Then \(g_j \notin B_1(U_m)\) \(\Rightarrow B_1(U_m, n)\) and \(\lim_j g_j = h\). Since \(h\) is an arbitrary element \(B_1(U_m, n)\), \(\text{int} B_1(U_m, n) = \emptyset\).

Let \(B_1 = \bigcup \{B_1(U_m) : m \in \mathbb{Z}^+\}\) and \(B_2 = \{f \in B : f\) can be extended to some neighborhood of \(p\}\). Then \(B_1 = B_2\). Now since \(B\) has the baire property, \(B_1 \subseteq B\). Hence there is \(f \in B - B_1\), so \(f \notin B_2\), \(f\) cannot be extended to any neighborhood of \(p\).

5. THEOREM. Let \((X, A)\) be a ringed space. We assume that \(X\) is a locally compact locally connected hausdorff space, and \(A\) is hausdorff, c.o. complete and montel. Let \(D\) be a region in \(X\) such that \(\overline{D} - D\) is separable and \(X\) is first countable on \(\overline{D} - D\). Let \(B\) be a closed subalgebra of \(B(D)\) as in the lemma. Then these are equivalent:

(i) For every \(p \in \overline{D} - D\) there is a function \(f_p \in B\) which cannot be extended to any \(U \in N(p)\).

(ii) There is a function \(f \in B\) which cannot be extended beyond the boundary of \(D\).

Proof. Let \(\{U_m : m \in \mathbb{Z}^+\}\) be a countable basis of nested open neighborhoods of \(p \in \overline{D} - D\). Let \(B_1(p, U_m, n) = \{f \in B : f = g|D, g \in B(D \cup U_m), \|g\|_V \leq n\}, n, m \in \mathbb{Z}^+\). Then \(B_1(p, U_m, n)\) is a closed nowhere dense subset of \(B\) as in the proof of the lemma. Let \(\{p_i : i \in \mathbb{Z}^+\}\) be a countable dense subset of \(\overline{D} - D\) and \(\{U_m^{(i)}\}\) be a countable basis of nested open neighborhoods of \(p_i\). Let

\[
B_2 = \bigcup \{B_1(p_i, U^{(i)}_m, n) : i, m, n \in \mathbb{Z}^+\}
\]

and

\[
B_3 = \{f \in B : f\) can be extended beyond \(\overline{D} - D\}\).
\]

Then \(B_2 = B_3\). Since \(B\) is baire, \(B_2 \supseteq B\). Hence there is \(f \in B - B_2 = B - B_3\), which asserts (ii).

6. COROLLARY. Let \((X, A)\) be a complex analytic manifold and \(D\) be a region in \(X\) such that \(\overline{D} - D\) is separable and \(X\) is first countable on \(\overline{D} - D\). Let \(B = B(D)\). Then these are equivalent:

(i) For every \(p \in \overline{D} - D\) there is an \(f \in B\) which cannot be extended to any \(U \in N(p)\).

(ii) \(D\) is a weak region of bounded holomorphy.

7. DEFINITION. Let \((X, A)\) be a ringed space and \(D\) be a region in \(X\). Let \(V\) be an open subset of \(X\) such that \(D \cap V \neq \emptyset\) and \(V \supset D\). \(f \in B(D)\) is said to be continued to \(V\) if there is a connected component \(\Omega\) of \(D \cap V\) and \(g \in B(V)\) such that \(f = g\) on \(\Omega\). We say that \(g\) is a continuation of \(f\) to \(V\). A boundary point \(p\) of \(D\) is said to be a boundary singularity for \(f \in B(D)\) if \(f\) cannot be continued to any open
neighborhood of \(p \). A region is called a region of bounded holomorphy if there is an \(f \in B(D) \) for which every boundary point of \(D \) is a boundary singularity.

We give a characterization of a region of bounded holomorphy by a local property in the next theorem.

8. **Lemma.** Let \((X, A) \) be a ringed space. We assume that \(X \) is a locally compact and locally connected Hausdorff space and \(A \) is Hausdorff, c.o. complete, and Montel. Let \(D \) be a region in \(X \) and \(p \in \overline{D} - D \) such that \(X \) is first countable at \(p \). Let \(B \) be a closed (relative to the topology of uniform convergence on \(D \)) subalgebra of \(B(D) \). Then these are equivalent:

1. For every \(U_a \in N(p) \) and every connected component \(\Omega_{a\beta} \) of \(U_a \cap D \) there is \(f_{a\beta} \in B \) such that \(f_{a\beta} \) has no continuation to \(U_a \).

2. There is \(f \in B \) such that for all \(U \in N(p) \) and for all connected components \(\Omega \) of \(U \cap D \), \(f \) has no continuation to \(U \), i.e. \(p \) is a boundary singularity for \(f \).

Proof. It suffices to show that (1°) implies (2°). Let \(\{U_a : a \in \mathbb{Z}^+\} \) be a countable nested basis of open neighborhoods of \(p \) and let \(\{\Omega_{a\beta} : \beta \in \mathbb{Z}^+\} \) be a countable family of connected components of \(U_a \cap D \). Let \(B_1(\Omega_{a\beta}, n) = \{f \in B : \text{there is } g \in B(U_a) \text{ such that } f = g \text{ on } \Omega_{a\beta} \text{ and } \|g\|_{U_a} \leq n\}, n \in \mathbb{Z}^+ \). Then as in the proof of Lemma 4, \(B_1(\Omega_{a\beta}, n) \) is a closed nowhere dense subset of \(B \). Let \(B_1 = \bigcup_{a, \beta, n} B_1(\Omega_{a\beta}, n) \) and let \(B_2 = \{f \in B : f \text{ can be continued to some neighborhood of } p\} \). Then \(B_1 = B_2 \), and since \(B_1 \subseteq B \) there is an \(f \in B - B_2 \).

9. **Theorem.** Let \((X, A) \) be a ringed space. We assume that \(X \) is a locally compact, locally connected Hausdorff space and \(A \) is Hausdorff, c.o. complete and Montel. Let \(D \) be a region in \(X \) such that \(\overline{D} - D \) is separable and \(X \) is first countable on \(\overline{D} - D \). Let \(B \) be a closed subalgebra of \(B(D) \). Then these are equivalent:

1. For every \(p \in \overline{D} - D \) there is a function \(f_p \in B \) for which \(p \) is a boundary singularity.

2. There is a function \(f \in B \) for which every boundary point is a boundary singularity.

Proof. Follows by the lemma and in a similar way as the proof of Theorem 5.

10. **Corollary.** Let \((X, A) \) be a complex analytic manifold and \(D \) be a region in \(X \) such that \(\overline{D} - D \) is separable. Let \(B = B(D) \). Then these are equivalent:

1. For every \(p \in \overline{D} - D \) there is \(f_p \in B \) for which \(p \) is a boundary singularity.

2. \(D \) is a region of bounded holomorphy.

In the following, we show that a weak region of bounded holomorphy is a region of bounded holomorphy when the region is locally connected on the boundary.

11. **Definition.** Let \(X \) be a topological space and \(D \) be a region in \(X \). We say that \(D \) is locally connected at \(p \in \overline{D} - D \) if \(p \) has a base of open neighborhoods whose intersections with \(D \) are connected. \(D \) is locally connected on the boundary of \(D \) if \(D \) is locally connected at every point of the boundary.

The following lemma will give the proof of Theorem 13.
12. Lemma. Let X be a locally connected Hausdorff space and let D be a region in X which is locally connected on the boundary. Let $V \in N(p)$, $p \in \overline{D} - D$ and U be an open subset of $V \cap D$. Then there is an open set $V_1 \subset U$ such that $V_1 \cap (\overline{D} - D) \neq \emptyset$, $V_1 \cap D$ is connected and $V_1 \cap U \neq \emptyset$.

Proof. We assume that V is a connected neighborhood of p.

(i) We show that for every connected component Ω of $V \cap D$, $V \cap (\overline{\Omega} - \Omega) \subset \overline{D} - D$. Note that $V \cap (\overline{\Omega} - \Omega) \neq \emptyset$, for otherwise we have $V = (V - \overline{\Omega}) \cup \Omega$ which contradicts its connectedness. Now $\Omega \cap D$ so that $V \cap (\overline{\Omega} - \Omega) \subset V \cap \overline{D}$. If $V \cap (\overline{\Omega} - \Omega) \subset D \neq \emptyset$, take $p \in V \cap (\overline{\Omega} - \Omega) \cap D$ then there is a connected open set $U' \in N(p)$ such that $U' \subset V \cap D$ and $U' \cap \Omega \neq \emptyset$. Thus $U' \cup \Omega \subset V \cap D$ is connected. But then $U' \cup \Omega = \Omega$ and $p \in \Omega$, which is a contradiction. It follows that $V \cap (\overline{\Omega} - \Omega) \subset D = \emptyset$ so that $V \cap (\overline{\Omega} - \Omega) \subset \overline{D} - D$.

(ii) Choose a connected component Ω of $V \cap D$ such that $\Omega \cap U \neq \emptyset$. Take $q \in V \cap (\overline{\Omega} - \Omega) \subset \overline{D} - D$ and choose a neighborhood V' of q such that $V' \subset V$ and $V' \cap D$ is connected. Let $V_1 = \Omega \cup V'$. Since $\Omega \cap V' \neq \emptyset$, V_1 has the required property.

13. Theorem. Let (X, A) be a ringed space. We assume that X is a locally compact, locally connected Hausdorff space, and A is Hausdorff, $c._{o.}$ complete and Montel. Let D be a region in X which is locally connected on the boundary. Let B be a closed subalgebra of $B(D)$. Then these are equivalent:

(1) There is a function $f \in B$ which cannot be extended beyond D.

(2) There is a function $f \in B$ which cannot be continued beyond D.

Proof. It is immediate from the lemma.

14. Corollary. Let (X, A) be a complex analytic manifold. Let D be a region which is locally connected on the boundary. Let B be a closed subalgebra of $B(D)$. Then these are equivalent:

(1) D is a weak region of bounded holomorphy.

(2) D is a region of bounded holomorphy.

We investigate regions of bounded holomorphy in $(\mathbb{C}^n, \emptyset)$. First, we have a useful lemma for searching domains of bounded holomorphy.

15. Lemma. Let (X, A) be a complex analytic manifold and D be a region in X. Let U be a domain such that $D \cap U \neq \emptyset$ and $U \notin D$. If every function $f \in B(D)$ can be continued to U and \tilde{f} denotes the continuation of f to U, then $\tilde{f}(U) \subseteq \text{cl}(f(D))$ for all $f \in B(D)$.

Proof. Let $\alpha \notin \text{cl}(f(D))$, then $g = (f - \alpha)^{-1} \in B(D)$, and so has a continuation $\tilde{g} \in B(U)$. Now $g \cdot (f - \alpha) \equiv 1$ on D, and $g \cdot (f - \alpha) = \tilde{g} \cdot (\tilde{f} - \alpha) \equiv 1$ on a connected component Ω of $D \cap U$. So by analytic continuation, $\tilde{g} \cdot (\tilde{f} - \alpha) \equiv 1$ on U. Hence $\alpha \notin \tilde{f}(U)$. So $\tilde{f}(U) \subseteq \text{cl}(f(D))$.

16. Simple examples of domains of bounded holomorphy in $(\mathbb{C}^n, \emptyset)$.

(1) An open polydisc

$$P(w:r) = P(w_1, \ldots, w_n : r_1, \ldots, r_n) = \{s \in \mathbb{C}^n : |s_i - w_i| < r_i, 1 \leq i \leq n\} \subset \mathbb{C}^n$$
is a domain of bounded holomorphy. For, take a boundary point \(s \in \overline{P(w;r)} \); then
\(|s_j|=r_j\) for some \(j \). Now for any polydisc \(P(s;\varepsilon), \|z_j\|_{P_j}>r_j \). Hence \(z(P) \neq \text{cl}(Z(P)) \). By Lemma 15, \(P \) is a domain of bounded holomorphy. Moreover, an analytic polyhedron and a bounded complete Reinhardt domain are domains of bounded holomorphy.

(2°) A simply connected domain \(D \) in \(C \) which is locally connected on the boundary of \(D \) is a domain of bounded holomorphy.

17. Proposition. Let \(\{D_j : j \in \mathbb{Z}^+\} \) be an indexed set of regions of bounded holomorphy in \(C^n \). Let \(D=\bigcap_{j=1}^\infty D_j \) and assume that \(D \) is open. Then \(D \) is a region of bounded holomorphy in \(C^n \).

Proof. For a point \(p \in \overline{D} - D \) there exists \(m \in \mathbb{Z}_+ \) such that \(p \notin D_m \). Then there exists \(f \in B(D_m) \) which is a singular function at \(p \). Thus \(f|D \in B(D) \) is singular at \(p \).

18. Proposition. A finite cartesian product of regions of bounded holomorphy is a region of bounded holomorphy.

Proof. We shall prove this for the case of a product of two regions. Let \(D_1 \) and \(D_2 \) be regions of bounded holomorphy in \(C^n \) and let \(f_i \in B(D_i), i=1,2 \), be singular functions. Define \(F_1 \in B(D \times C^n) \) by \(F_1(s,t)=f_1(s) \) and \(F_2 \in B(C^n \times D_2) \) by \(F_2(s,t)=f_2(t) \). Then \(F_1 \) is a singular function at every point of \((\text{bdry } D_1) \times C^n \) and so is \(F_2 \) for \(C^n \times (\text{bdry } D_2) \). For, if \(F_1 \) is not, then there is \(V \in N(p), p \in (\text{bdry } D_1) \times C^n \) such that \(F_1 \) can be continued to \(V \). Let \(W \) be the image of \(V \) into \(C^n \Rightarrow D_1 \) then \(F_1|W=f_1 \) can be continued to \(W \). But \(W \) is a neighborhood of a boundary point of \(D_1 \). This is absurd (similarly for \(F_2 \)). Now \(\text{bdry } (D_1 \times D_2)=(\text{bdry } D_1) \times D_2 \cup D_1 \times (\text{bdry } D_2) \). Thus if \(p \in \text{bdry } (D_1 \times D_2) \), then \(F_1 \) or \(F_2 \) is a singular function at \(p \). Hence \(D_1 \times D_2 \) is a domain of bounded holomorphy.

19. Proposition. Every convex (in the geometric sense) domain \(D \) in \(C^n \) is a domain of bounded holomorphy.

Proof. Since such a domain \(D \) is the intersection of the open halfspaces in \(C^n \) (as a real vector space \(R^{2n} \)) which contain it, by Proposition 17 it suffices to show that every open halfspace in \(C^n \) is a domain of bounded holomorphy. Let \(S=\{(z_1, \ldots, z_n) \in C^n : \text{Re } z_i>0, i=1, \ldots, n\} \). Then any open halfspace in \(C^n \) can be identified as \(S \) by a translation and a complex linear transformation. Hence again it suffices to show that \(S \) is a domain of bounded holomorphy. But this is so; for, let \(H=\{z \in C : \text{Re } z>0\} \), then since \(H \) can be mapped onto the open unit disc by a Riemann map, \(H \) is a domain of bounded holomorphy. Now \(S=\prod^n H \), a finite cartesian product. Hence \(S \) is a domain of bounded holomorphy by Proposition 18.

20. Proposition. Let \(D \) be a region in \(C^n, n>1 \), and let \(K \) be a compact subset of \(D \) such that \(D-K \) is connected. Then for every \(f \in B(D-K) \) there exists \(f^* \in B(D) \) such that \(f=f^* \) on \(D-K \).
Proof. Since $B(D-K) \subset \mathcal{O}(D-K)$, for every function $f \in B(D-K)$ there is $f' \in \mathcal{O}(D)$ such that $f = f'$ on $D-K$ by a theorem of Hartog's. So it suffices to show that those extensions are still bounded on D. But this is clear from Lemma 15.

21. Let D be a region in \mathbb{C}^n and let $B = B(D)$. Then B is a Banach algebra with the supremum norm on D. The spectrum of B, denoted by $S(B)$, is the set of nonzero complex homomorphisms of B. For $z \in D$ if we define $h_z(f) = f(z)$, $f \in B$, then $h_z \in S(B)$. Hence we obtain a mapping $\rho: D \to S(B)$, $\rho(z) = h_z$. To each $f \in B$ we associate a function \tilde{f} defined on $S(B)$ by defining $\tilde{f}(h) = f(h)$. Since $\tilde{f} \circ \rho = f$, the mapping $f \mapsto \tilde{f}$ is one-to-one. We endow $S(B)$ with the weakest topology which makes \tilde{f} continuous. Then $S(B)$ is compact and the mapping $f \mapsto \tilde{f}$ is an isometry of B onto $\tilde{B} = \{ \tilde{f} : f \in B \}$. Hence we may assume that B is defined on $S(B)$. Let $f_1, \ldots, f_n \in B$. The joint spectrum of f_1, \ldots, f_n is the set; $\sigma(f_1, \ldots, f_n) = \{(f_1(h), \ldots, f_n(h)) : h \in S(B)\}$. For given $f_1, \ldots, f_n \in B$ we define $\pi: S(B) \to C^n$ by $\pi(h) = (f_1(h), \ldots, f_n(h))$, then π is a continuous map. If D is relatively compact in C^n then the coordinate functions z_1, \ldots, z_n belong to B and $\pi S(B) \supset D$ since the point evaluation maps are in $S(B)$. Furthermore, since $S(B)$ is compact $\pi S(B) \supset D$.

Now we have the following theorem:

22. Theorem. Let D be a relatively compact region in \mathbb{C}^n with $\text{int } D = D$. If $\pi S(B) = \bar{D}$ then D is a region of bounded holomorphy.

Proof. If we assume that D is not a region of bounded holomorphy, then every function $f \in B$ has an extension \tilde{f} to a neighborhood V of a boundary point p of D. By Lemma 15, $\tilde{f}(V) \subset \text{cl } (f(D))$. Hence the extensions $\tilde{f}, f \in B$ are continuous with respect to the supnorm on D. Now take a point $z \in V - \bar{D}$, consider the point evaluation map h_z, $h_z(\tilde{f}) = \tilde{f}(z)$ for all $f \in B$, then $h_z \in S(B)$ and $\pi(h_z) = z \in V - \bar{D}$, which is absurd.

We note that if $\text{int } D \neq D$ then the theorem is false; consider

$$D = \{ z \in \mathbb{C} : 0 < |z| < 1 \}$$

then $B(D) = B(D \cup \{0\})$ and $S(B) = \bar{D}$. But D is not a domain of bounded holomorphy.

References

3. F. Quigley, Lectures on several complex variables, Tulane University, New Orleans, La., 1964/65, 1965/66.

University of Florida, Gainesville, Florida 32601