Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Invariant states


Author: Richard H. Herman
Journal: Trans. Amer. Math. Soc. 158 (1971), 503-512
MSC: Primary 46.65
DOI: https://doi.org/10.1090/S0002-9947-1971-0281013-6
MathSciNet review: 0281013
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: States of a $ {C^ \ast }$-algebra invariant under the action of a group of automorphisms of the $ {C^ \ast }$-algebra are considered. It is shown that ``clustering'' states in the same part are equal and thus the same is true of extremal invariant states under suitable conditions. The central decomposition of an invariant state is considered and it is shown that the central measure is mixing if and only if the state satisfies a strong notion of clustering. Under transitivity of the central measure and some reasonable restrictions, the central decomposition is the ergodic decomposition of the state with respect to the isotropy subgroup.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Aarnes, On the continuity of automorphic representations of groups, Comm. Math. Phys. 7 (1968), 332-336. MR 36 #6542. MR 0223494 (36:6542)
  • [2] C. A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286-302. MR 34 #6549. MR 0206732 (34:6549)
  • [3] André deKorvin, Expectations in operator algebras, Thesis, University of California, Los Angeles, 1967.
  • [4] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234. MR 0094722 (20:1234)
  • [5] J. Dixmier, Les $ {C^ \ast }$-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [6] S. Doplicher, R. V. Kadison, D. Kastler and D. W. Robinson, Asymptotically abelian systems, Comm. Math. Phys. 6 (1967), 101-120. MR 35 #7134. MR 0216299 (35:7134)
  • [7] G. G. Emch, H. J. F. Knops and E. J. Verboren, The breaking of euclidean symmetry with an application to the theory of crystallization, J. Mathematical Phys. 11 (1970), 1655-1668. MR 0264952 (41:9541)
  • [8] J. G. Glimm and R. V. Kadison, Unitary operators in $ {C^ \ast }$-algebras, Pacific J. Math. 10 (1960), 547-556. MR 22 #5906. MR 0115104 (22:5906)
  • [9] R. Haag, D. Kastler and L. Michel, Central decomposition of ergodic states (preprint).
  • [10] R. Haag, N. M. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical mechanics, Comm. Math. Phys. 5 (1967), 215-236. MR 36 #2366. MR 0219283 (36:2366)
  • [11] R. V. Kadison, Transformation of states in operator theory and dynamics, Topology 3 (1964), suppl. 2, 177-198. MR 29 #6328. MR 0169073 (29:6328)
  • [12] I. Kovacs and J. Szucs, Ergodic type theorems in von Neumann algebras, Acta. Sci. Math. (Szeged) 27 (1966), 233-246. MR 35 #753. MR 0209857 (35:753)
  • [13] R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690. MR 0193470 (33:1690)
  • [14] S. Sakai, On the central decomposition for positive functionals on $ {C^ \ast }$-algebra, Trans. Amer. Math. Soc. 118 (1965), 406-419. MR 31 #3886. MR 0179640 (31:3886)
  • [15] E. Størmer, Large groups of automorphisms of $ {C^ \ast }$-algebras, Comm. Math. Phys. 5 (1967), 1-22. MR 37 #2012. MR 0226422 (37:2012)
  • [16] -, Symmetric states of infinite tensor products of $ {C^ \ast }$-algebras, J. Functional Analysis 3 (1969), 48-68. MR 39 #3327. MR 0241992 (39:3327)
  • [17] M. Takesaki, Covariant representations of $ {C^ \ast }$-algebra and their locally compact automorphism groups, Acta. Math. 119 (1967), 273-303. MR 37 #774. MR 0225179 (37:774)
  • [18] -, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., no. 128, Springer-Verlag, Berlin and New York, 1970.
  • [19] J. Tomiyama, A characterization of $ {C^ \ast }$-algebra whose conjugate spaces are separable, Tôhoku Math. J. (2) 15 (1963), 96-102. MR 26 #4203. MR 0146683 (26:4203)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.65

Retrieve articles in all journals with MSC: 46.65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0281013-6
Keywords: Invariant state, asymptotically abelian, central measure, ergodic decomposition, clustering state
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society