Embedding a partially ordered ring in a division algebra
Author:
William H. Reynolds
Journal:
Trans. Amer. Math. Soc. 158 (1971), 293300
MSC:
Primary 16.80; Secondary 06.00
MathSciNet review:
0283026
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: D. K. Harrison has shown that if a ring with identity has a positive cone that is an infinite prime (a subsemiring that contains 1 and is maximal with respect to avoiding  1), and if the cone satisfies a certain archimedean condition for all elements of the ring, then there exists an order isomorphism of the ring into the real field. Our main result shows that if Harrison's archimedean condition is weakened so as to apply only to the elements of the cone and if a certain centrality relation is satisfied, then there exists an order isomorphism of the ring into a division algebra that is algebraic over a subfield of the real field. Also, Harrison's result and a related theorem of D. W. Dubois are extended to rings without identity; in so doing, it is shown that order isomorphic subrings of the real field are identical.
 [1]
D.
W. Dubois, A note on David Harrison’s theory of
preprimes, Pacific J. Math. 21 (1967), 15–19.
MR
0209200 (35 #103)
 [2]
, Second note on David Harrison's theory of preprimes, Pacific J. Math. 24 (1967), 5768. MR 36 #5049.
 [3]
D.
K. Harrison, Finite and infinite primes for rings and fields,
Mem. Amer. Math. Soc. No. 68 (1966), 62. MR 0207735
(34 #7550)
 [4]
Nathan
Jacobson, Structure of rings, American Mathematical Society,
Colloquium Publications, vol. 37, American Mathematical Society, 190 Hope
Street, Prov., R. I., 1956. MR 0081264
(18,373d)
 [5]
Carl
W. Kohls, Representation of abelian groups and
rings by families of realvalued functions, Proc. Amer. Math. Soc. 25 (1970), 86–92. MR 0256964
(41 #1619), http://dx.doi.org/10.1090/S00029939197002569643
 [6]
J.L.
Krivine, Anneaux préordonnés, J. Analyse Math.
12 (1964), 307–326 (French). MR 0175937
(31 #213)
 [7]
Oystein
Ore, Linear equations in noncommutative fields, Ann. of Math.
(2) 32 (1931), no. 3, 463–477. MR
1503010, http://dx.doi.org/10.2307/1968245
 [8]
R.
S. Palais, The classification of real division algebras, Amer.
Math. Monthly 75 (1968), 366–368. MR 0228539
(37 #4119)
 [1]
 D. W. Dubois, A note on David Harrison's theory of preprimes, Pacific J. Math. 21 (1967), 1519. MR 35 #103. MR 0209200 (35:103)
 [2]
 , Second note on David Harrison's theory of preprimes, Pacific J. Math. 24 (1967), 5768. MR 36 #5049.
 [3]
 D. K. Harrison, Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc. No. 68 (1966). MR 34 #7550. MR 0207735 (34:7550)
 [4]
 N. Jacobson, Structure of rings, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1968. MR 0081264 (18:373d)
 [5]
 C. W. Kohls, Representation of abelian groups and rings by families of realvalued functions, Proc. Amer. Math. Soc. 25 (1970), 8692. MR 0256964 (41:1619)
 [6]
 J. L. Krivine, Anneaux preordonnés, J. Analyse Math. 12 (1964), 307326. MR 31 #213. MR 0175937 (31:213)
 [7]
 O. Ore, Linear equations in noncommutative fields, Ann. of Math. 32 (1931), 463477. MR 1503010
 [8]
 R. S. Palais, The classification of real division algebras, Amer. Math. Monthly 75 (1968), 366368. MR 37 #4119. MR 0228539 (37:4119)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
16.80,
06.00
Retrieve articles in all journals
with MSC:
16.80,
06.00
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197102830267
PII:
S 00029947(1971)02830267
Keywords:
Harrison infinite prime,
ordered ring,
representation,
realvalued continuous function,
compact space,
algebraic division algebra
Article copyright:
© Copyright 1971
American Mathematical Society
