Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representation of vector valued nonlinear functions


Authors: Victor J. Mizel and K. Sundaresan
Journal: Trans. Amer. Math. Soc. 159 (1971), 111-127
MSC: Primary 47.80; Secondary 28.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0279647-8
MathSciNet review: 0279647
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A representation theorem for ``additive'' nonlinear functional on spaces $ {L^p}(\mu )$ is here extended to ``additive'' nonlinear functions from Lebesgue-Bochner function spaces $ L_E^p(\mu )$ ($ E$ a separable Banach space) into Banach spaces $ B$. A counterexample is provided to show that the restriction to separable $ E$ is essential.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. MR 1501880
  • [2] L. Drewnowski and W. Orlicz, On orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 883-888. MR 39 #6069. MR 0244755 (39:6069)
  • [3] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [4] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965. MR 36 #4308. MR 0221256 (36:4308)
  • [5] M. A. Krasnosel'skiĭ, Topological methods in the theory of non-linear integral equations, GITTL, Moscow, 1956; English transl., Macmillan, New York, 1964. MR 20 #3464; MR 28 #2414. MR 0096983 (20:3464)
  • [6] V. J. Mizel, Characterization of nonlinear transformations possessing kernels, Canad. J. Math. 22 (1970), 449-471. MR 0262890 (41:7495)
  • [7] V. J. Mizel and K. Sundaresan, Representation of additive and biadditive functionals, Arch. Rational Mech. Anal. 30 (1968), 102-126. MR 37 #3341. MR 0227757 (37:3341)
  • [8] B. J. Pettis, Differentiation in Banach spaces, Duke Math. J. 5 (1939), 254-269. MR 1546122
  • [9] R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114-145. MR 2, 103. MR 0002707 (2:103c)
  • [10] M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466-487. MR 36 #5297. MR 0222245 (36:5297)
  • [11] W. A. Woyczyński, Additive functionals on Orlicz spaces, Colloq. Math. 19 (1968), 319-326. MR 37 #5688. MR 0230123 (37:5688)
  • [12] V. J. Mizel and K. Sundaresan, Characterization of nonlinear vector valued functions, Report 69-30, Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pa., 1969.
  • [13] J. Dieudonné, Sur le théorème de Lebesgue-Nikodym. III, Ann. Univ. Grenoble Sect. Sci. Math. Phys. 23 (1948), 25-53. MR 10, 519. MR 0028924 (10:519b)
  • [14] -, Sur le théorème de Lebesgue-Nikodym. V, Canad. J. Math. 3 (1951), 129-139. MR 13, 448. MR 0044611 (13:448a)
  • [15] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, Paris, 1964; English transl., Holden-Day, San Francisco, Calif., 1965. MR 33 #6659; 6660. MR 0198504 (33:6659)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.80, 28.00

Retrieve articles in all journals with MSC: 47.80, 28.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0279647-8
Keywords: Additive functions, Carathéodory functions, locally uniformly continuous in variation, Lebesgue-Bochner function spaces, Bochner measurable
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society