Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On zonotopes


Author: P. McMullen
Journal: Trans. Amer. Math. Soc. 159 (1971), 91-109
MSC: Primary 52.10; Secondary 05.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0279689-2
MathSciNet review: 0279689
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper is described a diagram technique for zonotopes, or vector sums of line segments, which is analogous to that of Gale diagrams for general polytopes, and central diagrams for centrally symmetric polytopes. The use of these new zonal diagrams leads to relationships between zonotopes with $ n$ zones of dimensions $ d$ and $ n - d$, and enables one to enumerate all the combinatorial types of $ d$-zonotopes with $ n \leqq d + 2$ zones. The connexion between arrangements of hyperplanes in projective space and zonotopes leads to corresponding new results about arrangements.


References [Enhancements On Off] (What's this?)

  • [W] E. Bonnice and L. M. Kelly, On the number of ordinary planes, J. Combinatorial Theory (to appear).
  • [H] S. M. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9) 41 (1962), 137-156. MR 25 #4417. MR 0141004 (25:4417)
  • [G] A. Dirac, Collinearity properties of sets of points, Quart. J. Math. Oxford Ser. (2) 2 (1951), 221-227. MR 13, 270. MR 0043485 (13:270c)
  • [P] Erdös, Problem no. 4065, Amer. Math. Monthly 50 (1943), 65. MR 1543984
  • [D] Gale, Neighboring vertices on a convex polyhedron. Linear inequalities and related systems, Ann. of Math. Studies, no. 38, Princeton Univ. Press, Princeton, N. J., (1956), pp. 255-263. MR 19, 57. MR 0085552 (19:57i)
  • [B] Grünbaum, Convex polytopes, Pure and Appl. Math., vol. 16, Interscience, New York, 1967. MR 37 #2085.
  • [S] Hansen, A generalization of a theorem of Sylvester on the lines determined by a finite point set, Math. Scand. 16 (1965), 175-180. MR 34 #3411. MR 0203561 (34:3411)
  • [L] M. Kelly and W. O. J. Moser, On the number of ordinary lines determined by $ n$ points, Canad. J. Math. 1 (1958), 210-219. MR 20 #3494. MR 0097014 (20:3494)
  • [P] McMullen, Linearly stable polytopes, Canad. J. Math. 21 (1969), 1427-1431. MR 0253149 (40:6364)
  • [P] McMullen and G. C. Shephard, Diagrams for centrally symmetric polytopes, Mathematika 15 (1968), 123-138. MR 38 #6456. MR 0238180 (38:6456)
  • 1. -, Convex polytopes and the upper-bound conjecture, London Math. Soc. Lecture Note Series, vol. 3, 1971.
  • [T] S. Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc. 70 (1951), 451-464. MR 12, 849. MR 0041447 (12:849c)
  • [G] Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145-254, 217, 232.
  • [G] C. Shephard, Diagrams for positive bases, J. London Math. Soc. (to appear). MR 0295209 (45:4277)
  • [E] Steinitz, Bedingt konvergente Reihen und konvexe Systeme. II, J. Reine Angew. Math. 144 (1914), 1-40. FM 44, 287.
  • [J] J. Sylvester, Mathematical question 11851, Ed. Times 59 (1893), 98.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 52.10, 05.00

Retrieve articles in all journals with MSC: 52.10, 05.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0279689-2
Keywords: Polytope, zonotope, zonal diagram, derived zonotope, arrangement of hyperplanes
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society