Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some characterizations of $ n$-dimensional $ F$-spaces


Author: M. J. Canfell
Journal: Trans. Amer. Math. Soc. 159 (1971), 329-334
MSC: Primary 54.70; Secondary 46.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0279784-8
MathSciNet review: 0279784
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain characterizations of an $ n$-dimensional $ F$-space in terms of the rings of continuous real-valued and complex-valued functions defined on the space. Motivation for these results is the work of Gillman and Henriksen on $ U$-spaces ($ F$-spaces of dimension 0) and $ T$-spaces ($ F$-spaces of dimension 0 or 1).


References [Enhancements On Off] (What's this?)

  • [1] F. F. Bonsall and B. J. Tomuik, The semi-algebra generated by a compact linear operator, Proc. Edinburgh Math. Soc. (2) 14 (1964/65), 177-196. MR 32 #1557. MR 0184083 (32:1557)
  • [2] M. J. Canfell, Uniqueness of generators of principal ideals in rings of continuous functions, Proc. Amer. Math. Soc. 26 (1970), 571-573. MR 0288109 (44:5307)
  • [3] J. R. Gard and R. D. Johnson, Four-dimension equivalences, Canad. J. Math. 20 (1968), 48-50. MR 36 #5913. MR 0222863 (36:5913)
  • [4] L. Gillman and M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362-365. MR 18, 9. MR 0078979 (18:9c)
  • [5] -, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391. MR 18, 9. MR 0078980 (18:9d)
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [7] M. Jerison, Rings of germs of continuous functions, Proc. Conf. Functional Analysis (Irvine, Calif., 1966), Academic Press, London; Thompson Book, Washington, D.C., 1967. MR 36 #4342. MR 0221290 (36:4342)
  • [8] M. L. Weiss, Some separation properties in sup-norm algebras of continuous functions, Proc. Internat. Sympos. Function Algebras (Tulane University, 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 93-97. MR 33 #1756. MR 0193536 (33:1756)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.70, 46.00

Retrieve articles in all journals with MSC: 54.70, 46.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0279784-8
Keywords: $ n$-dimensional, $ F$-space, Hermite ring, $ {H_n}$-ring, rings of continuous functions
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society