Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existence and duality theorems for convex problems of Bolza


Author: R. T. Rockafellar
Journal: Trans. Amer. Math. Soc. 159 (1971), 1-40
MSC: Primary 49.10
DOI: https://doi.org/10.1090/S0002-9947-1971-0282283-0
MathSciNet review: 0282283
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of conjugate convex functions is applied to a fundamental class of ``convex'' problems in the calculus of variations and optimal control. This class has many special properties which have not previously been exploited and for which the standard methods of approach are inadequate. Duality theorems are established which yield new results on the existence of optimal arcs, as well as necessary and sufficient conditions for optimality. These results have some relevance also to the study of ``nonconvex'' problems.


References [Enhancements On Off] (What's this?)

  • [1] E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443-467. MR 39 #1968. MR 0240621 (39:1968)
  • [2] L. Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. I, Trans. Amer. Math. Soc. 124 (1966), 369-412. MR 34 #3392. MR 0203542 (34:3392)
  • [3] J. J. Moreau, Fonctionelles convexes, mimeographed lecture notes, Collège de France, 1967.
  • [4] -, Sur la fonction polaire d'une fonction semi-continue supérieurement, C. R. Acad. Sci. Paris 258 (1964), 1128-1130. MR 28 #3307. MR 0160093 (28:3307)
  • [5] C. Olech, Existence theorems for optimal problems with vector-valued cost function, Trans. Amer. Math. Soc. 136 (1969), 159-180. MR 38 #2655. MR 0234338 (38:2655)
  • [6] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1969. MR 1451876 (97m:49001)
  • [7] -, Integrals which are convex functionals. I, Pacific J. Math. 24 (1968), 525-540; II, Pacific J. Math. (to appear). MR 0236689 (38:4984)
  • [8] -, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), 4-25. MR 40 #288. MR 0247019 (40:288)
  • [9] -, Conjugate convex functions in optimal control and the calculus of variations, J. Math. Anal. Appl. 32 (1970), 174-222. MR 0266020 (42:929)
  • [10] -, Generalized Hamiltonian equations in convex problems of Lagrange, Pacific J. Math. 33 (1970), 411-427. MR 0276853 (43:2593)
  • [11] -, Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc. 123 (1966), 46-63. MR 33 #544. MR 0192318 (33:544)
  • [12] -, Convex Bolza functionals in control problems with state constraints (to appear).
  • [13] J. L. Joly, Une famille de topologies et de convergences sur l'ensemble des fonctionelles convexes, Thèse, Grenoble, 1970.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49.10

Retrieve articles in all journals with MSC: 49.10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0282283-0
Keywords: Optimal control, problem of Bolza, dual minimization problems, convex Lagrangian functions, Hamiltonian functions, existence of solutions, necessary conditions, conjugate convex functions
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society