A representation theorem for large and small analytic solutions of algebraic differential equations in sectors

Author:
Steven Bank

Journal:
Trans. Amer. Math. Soc. **159** (1971), 293-305

MSC:
Primary 34.06

DOI:
https://doi.org/10.1090/S0002-9947-1971-0283272-2

MathSciNet review:
0283272

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we treat first-order algebraic differential equations whose coefficients belong to a certain type of function field. In the particular case where the coefficients are rational functions, our main result states that for any given sector in the plane, there exists a positive real number , depending only on the equation and the angle opening of , such that any solution , which is meromorphic in and satisfies the condition as in , must be of the form in subsectors, where and are constants. (From this, we easily obtain a similar representation for analytic solutions in , which are not identically zero, and for which as in , where the positive real number again depends only on the equation and the angle opening of fs

**[1]**Steven Bank,*On solutions having large rate of growth for nonlinear differential equations in the complex domain*, J. Math. Anal. Appl.**22**(1968), 129–143. MR**0252728**, https://doi.org/10.1016/0022-247X(68)90165-0**[2]**Steven Bank,*On the instability theory of differential polynomials*, Ann. Mat. Pura Appl. (4)**74**(1966), 83–111. MR**0204785**, https://doi.org/10.1007/BF02416451**[3]**Steven Bank,*A result concerning meromorphic solutions in the unit disk of algebraic differential equations*, Compositio Math.**22**(1970), 367–381. MR**0280767****[4]**E. W. Chamberlain,*The univalence of functions asymptotic to nonconstant logarithmic monomials*, Proc. Amer. Math. Soc.**17**(1966), 302–309. MR**0190311**, https://doi.org/10.1090/S0002-9939-1966-0190311-X**[5]**G. H. Hardy,*Some results concerning the behavior at infinity of a real and continuous solution of an algebraic differential equation of the first order*, Proc. London Math. Soc. (2)**10**(1912), 451-468.**[6]**Einar Hille,*Analytic function theory. Vol. II*, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR**0201608****[7]**Stanisław Saks and Antoni Zygmund,*Analytic functions*, Monografie Matematyczne, Tom XXVIII, Polskie Towarzystwo Matematyczne, Warszawa-Wroclaw, 1952. Translated by E. J. Scott. MR**0055432****[8]**Walter Strodt,*Contributions to the asymptotic theory of ordinary differential equations in the complex domain*, Mem. Amer. Math. Soc.,**No. 13**(1954), 81. MR**0067290****[9]**Walter Strodt,*On the algebraic closure of certain partially ordered fields*, Trans. Amer. Math. Soc.**105**(1962), 229–250. MR**0140514**, https://doi.org/10.1090/S0002-9947-1962-0140514-6**[10]**Masatsugu Tsuji,*Canonical product for a meromorphic function in a unit circle*, J. Math. Soc. Japan**8**(1956), 7–21. MR**0103273**, https://doi.org/10.2969/jmsj/00810007**[11]**G. Valiron,*Lectures on the general theory of integral functions*, Chelsea, New York, 1949.**[12]**T. Vijayaraghavan,*Sur la croissance des fonctions definies par les équations differentielles*, C. R. Acad. Sci. Paris**194**(1932), 827-829.**[13]**T. Vijayaraghavan, N. Basu and S. Bose,*A simple example for a theorem of Vijayaraghavan*, J. London Math. Soc.**12**(1937), 250-252.**[14]**B. L. van der Waerden,*Moderne Algebra*, Springer, Berlin, 1937; English transl., Ungar, New York, 1949. MR**10**, 587.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34.06

Retrieve articles in all journals with MSC: 34.06

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1971-0283272-2

Keywords:
Algebraic differential equations,
analytic solutions,
representation of solutions

Article copyright:
© Copyright 1971
American Mathematical Society