A representation theorem for large and small analytic solutions of algebraic differential equations in sectors

Author:
Steven Bank

Journal:
Trans. Amer. Math. Soc. **159** (1971), 293-305

MSC:
Primary 34.06

DOI:
https://doi.org/10.1090/S0002-9947-1971-0283272-2

MathSciNet review:
0283272

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we treat first-order algebraic differential equations whose coefficients belong to a certain type of function field. In the particular case where the coefficients are rational functions, our main result states that for any given sector in the plane, there exists a positive real number , depending only on the equation and the angle opening of , such that any solution , which is meromorphic in and satisfies the condition as in , must be of the form in subsectors, where and are constants. (From this, we easily obtain a similar representation for analytic solutions in , which are not identically zero, and for which as in , where the positive real number again depends only on the equation and the angle opening of fs

**[1]**S. Bank,*On solutions having large rate of growth for nonlinear differential equations in the complex domain*, J. Math. Anal. Appl.**22**(1968), 129-143. MR**40**#5945. MR**0252728 (40:5945)****[2]**-,*On the instability theory of differential polynomials*, Ann. Mat. Pura Appl. (4)**74**(1966), 83-111. MR**34**#4623. MR**0204785 (34:4623)****[3]**-,*A result concerning meromorphic solutions in the unit disk of algebraic differential equations*, Compositio Math.**22**(1970), 367-381. MR**0280767 (43:6486)****[4]**E. W. Chamberlain,*The univalence of functions asymptotic to nonconstant logarithmic monomials*, Proc. Amer. Math. Soc.**17**(1966), 302-309. MR**32**#7724. MR**0190311 (32:7724)****[5]**G. H. Hardy,*Some results concerning the behavior at infinity of a real and continuous solution of an algebraic differential equation of the first order*, Proc. London Math. Soc. (2)**10**(1912), 451-468.**[6]**E. Hille,*Analytic function theory*. Vol. II, Introduction to Higher Math., Ginn, Boston, Mass., 1962. MR**34**#1490. MR**0201608 (34:1490)****[7]**S. Saks and A. Zygmund,*Analytic functions*, Monografie Mat., Tom 10, PWN, Warsaw, 1938; English transl., Monografie Mat., Tom 28, PWN, Warsaw, 1952. MR**14**, 1073. MR**0055432 (14:1073a)****[8]**W. Strodt,*Contributions to the asymptotic theory of ordinary differential equations in the complex domain*, Mem. Amer. Math. Soc. No. 13 (1954). MR**16**, 702. MR**0067290 (16:702a)****[9]**-,*On the algebraic closure of certain partially ordered fields*, Trans. Amer. Math. Soc.**105**(1962), 229-250. MR**25**#3934. MR**0140514 (25:3934)****[10]**M. Tsuji,*Canonical product for a meromorphic function in a unit circle*, J. Math. Soc. Japan**8**(1956), 7-21. MR**21**#2051. MR**0103273 (21:2051)****[11]**G. Valiron,*Lectures on the general theory of integral functions*, Chelsea, New York, 1949.**[12]**T. Vijayaraghavan,*Sur la croissance des fonctions definies par les équations differentielles*, C. R. Acad. Sci. Paris**194**(1932), 827-829.**[13]**T. Vijayaraghavan, N. Basu and S. Bose,*A simple example for a theorem of Vijayaraghavan*, J. London Math. Soc.**12**(1937), 250-252.**[14]**B. L. van der Waerden,*Moderne Algebra*, Springer, Berlin, 1937; English transl., Ungar, New York, 1949. MR**10**, 587.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34.06

Retrieve articles in all journals with MSC: 34.06

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1971-0283272-2

Keywords:
Algebraic differential equations,
analytic solutions,
representation of solutions

Article copyright:
© Copyright 1971
American Mathematical Society