Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Integration theory on infinite-dimensional manifolds


Author: Hui Hsiung Kuo
Journal: Trans. Amer. Math. Soc. 159 (1971), 57-78
MSC: Primary 58B15; Secondary 28A40
DOI: https://doi.org/10.1090/S0002-9947-1971-0295393-9
MathSciNet review: 0295393
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to develop a natural integration theory over a suitable kind of infinite-dimensional manifold. The type of manifold we study is a curved analogue of an abstract Wiener space.

Let $ H$ be a real separable Hilbert space, $ B$ the completion of $ H$ with respect to a measurable norm and $ i$ the inclusion map from $ H$ into $ B$. The triple $ (i,H,B)$ is an abstract Wiener space. $ B$ carries a family of Wiener measures.

We will define a Riemann-Wiener manifold to be a triple $ (\mathcal{W},\tau ,g)$ satisfying specific conditions, $ \mathcal{W}$ is a $ {C^j}$-differentiable manifold $ (j \geqq 3)$ modelled on $ B$ and, for each $ x$ in $ \mathcal{W},\tau (x)$ is a norm on the tangent space $ {T_x}(\mathcal{W})$ of $ \mathcal{W}$ at $ x$ while $ g(x)$ is a densely defined inner product on $ {T_x}(\mathcal{W})$.

We show that each tangent space is an abstract Wiener space and there exists a spray on $ \mathcal{W}$ associated with $ g$. For each point $ x$ in $ \mathcal{W}$ the exponential map, defined by this spray, is a $ {C^{j - 2}}$-homeomorphism from a $ \tau (x)$-neighborhood of the origin in $ {T_x}(\mathcal{W})$ onto a neighborhood of $ x$ in $ \mathcal{W}$. We thereby induce from Wiener measures of $ {T_x}(\mathcal{W})$ a family of Borel measures $ {q_t}(x, \cdot ),t > 0$, in a neighborhood of $ x$. We prove that $ {q_t}(x, \cdot )$ and $ {q_s}(y, \cdot )$, as measures in their common domain, are equivalent if and only if $ t = s$ and $ {d_g}(x,y)$ is finite. Otherwise they are mutually singular. Here $ {d_g}$ is the almost-metric (in the sense that two points may have infinite distance) on $ \mathcal{W}$ determined by $ g$. In order to do this we first prove an infinite-dimensional analogue of the Jacobi theorem on transformation of Wiener integrals.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386-396. MR 6, 5. MR 0010346 (6:5f)
  • [2] -, Transformation of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc. 58 (1945), 184-219. MR 7, 127. MR 0013240 (7:127c)
  • [3] -, The transformation of Wiener integrals by nonlinear transformations, Trans. Amer. Math. Soc. 66 (1949), 253-283. MR 11, 116. MR 0031196 (11:116b)
  • [4] Ju. L. Daleckiĭ and Ja. I. Šnaĭderman, Diffusion and quasi-invariant measures on infinite-dimensional Lie groups, Funkcional. Anal. i Priložen. 3 (1969), no. 2, 88-90. (Russian) MR 40 #2138. MR 0248888 (40:2138)
  • [5] I. M. Gel'fand and N. Ja. Vilenkin, Generalized functions. Vol. 4: Some applications of harmonic analysis, Fizmatgiz, Moscow, 1961; English transl., Academic Press, New York, 1964. MR 26 #4173; MR 30 #4152. MR 0435834 (55:8786d)
  • [6] L. Gross, Classical analysis on a Hilbert space, Analysis in Function Space, M.I.T. Press, Cambridge, Mass., 1964, Chap. 4, pp. 51-68. MR 29 #4423. MR 0184066 (32:1542)
  • [7] -, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 372-390. MR 26 #5121. MR 0147606 (26:5121)
  • [8] -, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. 2, part 1: Contributions to Probability Theory, Univ. of California Press, Berkeley, Calif., 1967, pp. 31-42. MR 35 #3027. MR 0212152 (35:3027)
  • [9] -, Integration and nonlinear transformations in Hilbert space, Trans. Amer. Math. Soc. 94 (1960), 404-440. MR 22 #2883. MR 0112025 (22:2883)
  • [10] -, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123-181. MR 37 #3331. MR 0227747 (37:3331)
  • [11] I. M. Koval'chik, The Wiener integral, Uspehi Mat. Nauk 18 (1963), no. 1 (109), 97-134= Russian Math. Surveys 18 (1963), no. 1, 97-134. MR 36 #5295. MR 0222243 (36:5295)
  • [12] S. Lang, Differentiable manifolds, Interscience, New York, 1966.
  • [13] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969. MR 0433481 (55:6457)
  • [14] I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1965), 106-134. MR 0076317 (17:880d)
  • [15] -, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12-41. MR 21 #1545. MR 0102759 (21:1545)
  • [16] N. Wiener, The average value of a functional, Proc. London Math. Soc. (2) 22 (1923), 454-467.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58B15, 28A40

Retrieve articles in all journals with MSC: 58B15, 28A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0295393-9
Keywords: Integration theory, infinite-dimensional manifold, abstract Wiener space, Wiener measures, Jacobi Theorem, Riemann-Wiener manifold, Riemannian manifold, admissible transformation, spray, exponential map, Radon-Nikodym derivative, equivalence-perpendicularity dichotomy
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society