Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ \Gamma $-compact maps on an interval and fixed points


Author: William M. Boyce
Journal: Trans. Amer. Math. Soc. 160 (1971), 87-102
MSC: Primary 26.54; Secondary 22.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0280655-1
MathSciNet review: 0280655
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the $ \Gamma $-compact continuous functions $ f:X \to X$ where $ X$ is a possibly-noncompact interval. The map $ f$ is called $ \Gamma $-compact if the closed topological semigroup $ \Gamma (f)$ generated by $ f$ is compact, or equivalently, if every sequence of iterates of $ f$ under functional composition $ (\ast)$ has a subsequence which converges uniformly on compact subsets of $ X$. For compact $ X$ the characterization is that the set of fixed points of $ f\ast f$ is connected. If $ X$ is noncompact an additional technical condition is necessary. We also characterize those maps $ f$ for which iterates of distinct orders agree ( $ \Gamma (f)$ finite) and state a result on common fixed points of commuting functions when one of the functions is $ \Gamma $-compact.


References [Enhancements On Off] (What's this?)

  • [1] H. D. Block and H. P. Thielman, Commutative polynomials, Quart. J. Math. Oxford Ser. (2) 2 (1951), 241-243. MR 13, 552. MR 0045250 (13:552f)
  • [2] W. M. Boyce, Commuting functions with no common fixed point, Trans. Amer. Math. Soc. 137 (1969), 77-92. MR 38 #4627. MR 0236331 (38:4627)
  • [3] Ralph DeMarr, A common fixed point theorem for commuting mappings, Amer. Math. Monthly 70 (1963), 535-537. MR 28 #2531. MR 0159314 (28:2531)
  • [4] James Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [5] J. H. Folkman, On functions that commute with full functions, Proc. Amer. Math. Soc. 17 (1966), 383-386. MR 32 #8326. MR 0190916 (32:8326)
  • [6] K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Merrill, Columbus, Ohio, 1966. MR 35 #285. MR 0209387 (35:285)
  • [7] J. P. Huneke, On common fixed points of commuting continuous functions on an interval, Trans. Amer. Math. Soc. 139 (1969), 371-381. MR 38 #6005. MR 0237724 (38:6005)
  • [8] J. T. Joichi, On functions that commute with full functions and common fixed points, Nieuw Arch. Wisk. (3) 14 (1966), 247-251. MR 34 #5078. MR 0205245 (34:5078)
  • [9] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [10] Theodore Mitchell, Common fixed points for equicontinuous semigroups of mappings, Notices Amer. Math. Soc. 16 (1969), 115. Abstract #663-101.
  • [11] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448. MR 1501252
  • [12] A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706. MR 29 #2790. MR 0165508 (29:2790)
  • [13] A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95-112. MR 16, 796. MR 0067907 (16:796d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26.54, 22.00

Retrieve articles in all journals with MSC: 26.54, 22.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0280655-1
Keywords: $ \Gamma $-compact, fixed point, functional composition, topological semigroup, convergence of iteration, commuting functions, common fixed point, precompact, equicontinuous, real functions
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society