Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Identities involving the coefficients of a class of Dirichlet series. V, VI


Author: Bruce C. Berndt
Journal: Trans. Amer. Math. Soc. 160 (1971), 157-167
MSC: Primary 30.24; Secondary 10.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0280693-9
MathSciNet review: 0280693
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1949 Chowla and Selberg gave a very useful formula for the Epstein zeta-function associated with a positive definite binary quadratic form. Several generalizations of this formula are given here. The method of proof is new and is based on a theorem that we formerly proved for ``generalized'' Dirichlet series. An easy proof of Kronecker's second limit formula is also given.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. A. Stegun (editors), Handbook of mathematical functions, with formulas, graphs and mathematical tables, 3rd printing with corrections, Dover, New York, 1965. MR 31 #1400. MR 0177136 (31:1400)
  • [2] Pierre Barrucand, Sur une formule de Selberg et Chowla, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1398-A1401. MR 39 #5488. MR 0244171 (39:5488)
  • [3] P. T. Bateman and E. Grosswald, On Epstein's zeta function, Acta Arith. 9 (1964), 365-373. MR 31 #3392. MR 0179141 (31:3392)
  • [4] B. C. Berndt, Generalised Dirichlet series and Hecke's functional equation, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 309-313. MR 37 #1325. MR 0225732 (37:1325)
  • [5] -, Identities involving the coefficients of a class of Dirichlet series. III, Trans. Amer. Math. Soc. 146 (1969), 323-348. MR 40 #5551. MR 0252330 (40:5551)
  • [6] S. Chowla and A. Selberg, On Epstein's zeta function. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371-374. MR 11, 84. MR 0030997 (11:84d)
  • [7] -, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86-110. MR 35 #6632. MR 0215797 (35:6632)
  • [8] Paul Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1907), 205-216. MR 1511399
  • [9] Edmund Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, VEB Deutscher Verlag Wissenschaften, Berlin, 1962. MR 27 #112. MR 0150109 (27:112)
  • [10] Yoichi Motohashi, A new proof of the limit formula of Kronecker, Proc. Japan Acad. 44 (1968), 614-616. MR 38 #3243. MR 0234929 (38:3243)
  • [11] R. A. Rankin, A minimum problem for the Epstein zeta-function, Proc. Glasgow Math. Assoc. 1 (1953), 149-158. MR 15, 507. MR 0059300 (15:507c)
  • [12] C. L. Siegel, Lectures on advanced analytic number theory, Tata Institute of Fundamental Research, Bombay, 1961. MR 0262150 (41:6760)
  • [13] H. M. Stark, $ L$-functions and character sums for quadratic forms. II, Acta Arith. 15 (1968/69), 307-317. MR 39 #4101. MR 0242774 (39:4101)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.24, 10.00

Retrieve articles in all journals with MSC: 30.24, 10.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0280693-9
Keywords: Epstein zeta-function, Chowla-Selberg formula, functional equation with gamma factors, "generalized'' Dirichlet series, identities
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society