Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

New existence theorems for nonlinear equations of Hammerstein type.


Authors: W. V. Petryshyn and P. M. Fitzpatrick
Journal: Trans. Amer. Math. Soc. 160 (1971), 39-63
MSC: Primary 47.80
DOI: https://doi.org/10.1090/S0002-9947-1971-0281065-3
MathSciNet review: 0281065
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a real Banach space, $ {X^ \ast }$ its dual, $ A$ a linear map of $ X$ into $ {X^ \ast }$ and $ N$ a nonlinear map of $ {X^ \ast }$ into $ X$. Using the recent results of Browder and Gupta, Brezis, and Petryshyn, in this paper we study the abstract Hammerstein equation, $ w + ANw = 0$. Assuming suitable growth conditions on $ N$, new existence results are obtained under the following conditions on $ X,A$ and $ N$. In §1: $ X$ is reflexive, $ A$ bounded with $ f(x) = (Ax,x)$ weakly lower semicontinuous, $ N$ bounded and of type $ ($M$ )$. In §2: $ X$ is a general space, $ A$ angle-bounded, $ N$ pseudo-monotone. In §3: $ X$ is weakly complete, $ A$ strictly (strongly) monotone, $ N$ bounded (unbounded) and of type $ ($M$ )$. In §4: $ X$ is a general space, $ A$ is monotone and symmetric, $ N$ is potential. In §5: $ X$ is reflexive and with Schauder basis, $ {X^ \ast }$ strictly convex, $ N$ quasibounded and either monotone, or bounded and pseudo-monotone, or bounded and of type $ ($M$ )$.


References [Enhancements On Off] (What's this?)

  • [1] H. Amann, Über die Existenz und iterative Berechnung einer Lösung der Hammersteinschen Gleichung, Aequationes Math. 1 (1968), 242-266. MR 38 #4933. MR 0236638 (38:4933)
  • [2] -, Ein Existenz- und Eindeutigkeitssatz für die Hammersteinsche Gleichung in Banachräumen, Math. Z. 111 (1969), 175-190. MR 0254687 (40:7894)
  • [3] -, Zum Galerkin-Verfahren für die Hammer steinsche Gleichung, Arch. Rational Mech. Anal. 35 (1969), 114-121. MR 0273467 (42:8345)
  • [4] F. E. Browder and C. P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 75 (1969), 1347-1353. MR 40 #3381. MR 0250141 (40:3381)
  • [5] F. E. Browder, D. G. DeFigueiredo and C. P. Gupta, Maximal monotone operators and nonlinear integral equations of Hammerstein type (to appear).
  • [6] H. Brezis, Equations et inéquations non-linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115-176. MR 0270222 (42:5113)
  • [7] C. L. Dolph, Nonlinear integral equations of Hammerstein type, Trans. Amer. Math. Soc. 66 (1949), 289-307. MR 11, 367. MR 0032923 (11:367a)
  • [8] C. L. Dolph and G. J. Minty, On nonlinear integral equations of the Hammerstein type, Proc. Advanced Sem. Nonlinear Integral Equations (University of Wisconsin, 1963), Univ. of Wisconsin Press, Madison, Wis., 1964, pp. 99-154. MR 28 #4322. MR 0161113 (28:4322)
  • [9] D. G. DeFigueiredo and C. P. Gupta, Solvability of nonlinear integral equations of Hammerstein type (to appear).
  • [10] M. Golomb, On the theory of nonlinear integral equations, integral systems and general functional equations, Math. Z. 39 (1935), 45-75.
  • [11] C. P. Gupta, On existence of solutions of nonlinear integral equations of Hammerstein type in Banach space (to appear).
  • [12] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), 117-176. MR 1555304
  • [13] R. Inglisch, Existenz und Eindeutigkeit Sätze bei nichtlineare Integralgleichungen, Math Ann. 108 (1933), 161-189. MR 1512842
  • [14] I. I. Kolodner, Equations of Hammerstein type in Hilbert spaces, J. Math. Mech. 13 (1964), 701-750. MR 30 #1415. MR 0171184 (30:1415)
  • [15] J. Kolomy, Application of some existence theorems for the solutions of Hammerstein integral equations, Comment. Math. Univ. Carolinae 7 (1966), 461-478. MR 35 #686. MR 0209790 (35:686)
  • [16] -, The solvability of nonlinear integral equations, Comment. Math. Univ. Carolinae 8 (1967), 273-289. MR 35 #5878. MR 0215033 (35:5878)
  • [17] M. A. Krasnosel'skiĭ, Topological methods in the theory of nonlinear integral equations, GITTL, Moscow, 1956; English transl., Macmillan, New York, 1964. MR 20 #3464; MR 28 #2414. MR 0159197 (28:2414)
  • [18] V. V. Nemyckiĭ, Théorèmes d'existence et l'unicité des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41 (1934), 438-452.
  • [19] W. V. Petryshyn, On existence theorems for nonlinear equations involving noncompact mappings, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 326-330. MR 0268734 (42:3631)
  • [20] L. B. Rall, Variational methods for nonlinear integral equations, Proc. Advanced Sem. Nonlinear Integral Equations (University of Wisconsin, 1963), Univ. of Wisconsin Press, Madison, Wis., 1964, pp. 155-189. MR 29 #3912. MR 0166639 (29:3912)
  • [21] E. Rothe, Weak topology and nonlinear integral equations, Trans. Amer. Math. Soc. 66 1949), 75-92. MR 11, 184. MR 0031650 (11:184d)
  • [22] M. M. Vaĭnberg, Variational methods for the study of non-linear operators, GITTL, Moscow, 1956; English transl., Holden-Day, San Francisco, Calif., 1964. MR 19, 567; MR 31 #638.
  • [23] -, New theorems for nonlinear operators and equations, Moskov. Oblast. Ped. Inst. Učen. Zap. 77 (1959), 131-143.
  • [24] -, Nonlinear equations with potential and monotonic operators, Dokl. Akad. Nauk SSSR 183 (1968), 747-749 = Soviet Math. Dokl. 9 (1968), 1427-1430. MR 39 #832. MR 0239475 (39:832)
  • [25] M. M. Vaĭnberg and I. M. Lavrent'ev, Equations with monotonic and potential operators in Banach spaces, Dokl. Akad. Nauk SSSR 187 (1969), 711-714 = Soviet Math. Dokl. 10 (1969), 907-910. MR 0270236 (42:5127)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.80

Retrieve articles in all journals with MSC: 47.80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0281065-3
Keywords: Existence theorems, nonlinear operators, Hammerstein equations, weakly lower semicontinuous functionals, monotone and pseudo-monotone operators, operators of type $ ($M$ )$, pseudo-$ A$-proper operators, angle-bounded operators, potential operators, weakly and hemicontinuous operators
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society