Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Products with closed projections. II


Author: N. Noble
Journal: Trans. Amer. Math. Soc. 160 (1971), 169-183
MSC: Primary 54.25
DOI: https://doi.org/10.1090/S0002-9947-1971-0283749-X
MathSciNet review: 0283749
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions under which some or all of the projections on a product space will be closed or $ z$-closed are studied, with emphasis on infinite products. These results are applied to characterize normal products up to countably many factors, to characterize closed product maps up to finitely many factors, and to give conditions under which products will be countably compact, Lindelöf, paracompact, $ \mathfrak{m} - \mathfrak{n}$-compact, etc. Generalizations of these results to $ \mathfrak{n}$-products and box products are also given. Our easily stated results include: All powers of a $ {T_1}$ space $ X$ are normal if and only if $ X$ is compact Hausdorff, all powers of a nontrivial closed map $ p$ are closed if and only if $ p$ is proper, the product of countably many Lindelöf $ P$-spaces is Lindelöf; and the product of countably many countably compact sequential spaces is countably compact sequential.


References [Enhancements On Off] (What's this?)

  • [1] C. J. R. Borges, On a counter-example of A. H. Stone, Quart. J. Math. Oxford Ser. (2) 20 (1969), 91-95. MR 40 #6489. MR 0253274 (40:6489)
  • [2] W. W. Comfort, A nonpseudocompact product space whose finite subproducts are pseudocompact, Math. Ann. 170 (1967), 41-44. MR 35 #965. MR 0210070 (35:965)
  • [3] W. W. Comfort and A. W. Hager, The projection mapping and other continuous functions on a product space (to appear). MR 0315657 (47:4206)
  • [4] -, Estimates for the number of real-valued continuous functions, Trans. Amer. Math. Soc. 150 (1970), 619-632. MR 0263016 (41:7621)
  • [5] I. Fleischer and S. P. Franklin, On compactness and projections, Internationale Spezialtagung für Erweiterungstheorie topologischer Strukturen und deren Anwendungen, Berlin, 1967.
  • [6] Z. Frolík, The topological product of countably compact spaces, Czechoslovak Math. J. 10 (85) (1960), 329-338. MR 22 #8480. MR 0117705 (22:8480)
  • [7] -, On two problems of W. W. Comfort, Comment. Math. Univ. Carolinae 8 (1967), 139-144. MR 35 #966. MR 0210071 (35:966)
  • [8] -, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. MR 34 #3525. MR 0203676 (34:3525)
  • [9] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382. MR 21 #4405. MR 0105667 (21:4405)
  • [10] G. Gould, Locally unbounded topological fields and box topologies on products of vector spaces, J. London Math. Soc. 36 (1961), 273-281. MR 24 #A413. MR 0130553 (24:A413)
  • [11] S. L. Gulden, On $ m$-sequential spaces, Notices Amer. Math. Soc. 16 (1969), 293. Abstract #663-706.
  • [12] A. W. Hager, Projections of zero-sets (and the fine uniformity on a product), Trans. Amer. Math. Soc. 140 (1969), 87-94. MR 39 #3448. MR 0242114 (39:3448)
  • [13] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [14] C. J. Knight, Box topologies, Quart. J. Math. Oxford Ser. (2) 15 (1964), 41-54. MR 28 #3398. MR 0160184 (28:3398)
  • [15] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376. MR 27 #2956. MR 0152985 (27:2956)
  • [16] -, Local compactness and Cartesian products of quotient maps and $ k$-spaces, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 2, 281-286. MR 39 #6256. MR 0244943 (39:6256)
  • [17] K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/62), 223-236. MR 24 #A2365. MR 0132525 (24:A2365)
  • [18] S. Mrowka, On function spaces, Fund. Math. 45 (1957), 273-282. MR 0098312 (20:4773)
  • [19] N. Noble, Products with closed projections, Trans. Amer. Math. Soc. 140 (1969), 381-391. MR 40 #3500. MR 0250261 (40:3500)
  • [20] -, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969), 393-411. MR 40 #1978. MR 0248727 (40:1978)
  • [21] -, A note on $ z$-closed projections, Proc. Amer. Math. Soc. 23 (1969), 73-76. MR 39 #7575. MR 0246271 (39:7575)
  • [22] N. Noble, Products of quotient maps and spaces with weak topologies (to appear).
  • [23] -, Countably compact and pseudo-compact products, Czechoslovak Math. J. 19 (94) (1969), 390-397. MR 40 #1968. MR 0248717 (40:1968)
  • [24] -, A generalization of a theorem of A. H. Stone, Arch. Math. (Basel) 18 (1967), 394-395. MR 36 #5883. MR 0222833 (36:5883)
  • [25] -, A nice proof of Tychonoff's theorem (to appear).
  • [26] C. T. Scarborough, Closed graphs and closed projections, Proc. Amer. Math. Soc. 20 (1969), 465-470. MR 40 #3514. MR 0250275 (40:3514)
  • [27] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131-147. MR 34 #3528. MR 0203679 (34:3528)
  • [28] R. M. Stephenson, Jr., Pseudocompact spaces, Trans. Amer. Math. Soc. 134 (1968), 437-448. MR 38 #674. MR 0232349 (38:674)
  • [29] -, Product spaces for which the Stone-Weierstrass theorem holds, Proc. Amer. Math. Soc. 21 (1969), 284-288. MR 40 #3499. MR 0250260 (40:3499)
  • [30] H. Tamano, A note on the pseudo-compactness of the product of two spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/61), 225-230. MR 22 #11369. MR 0120619 (22:11369)
  • [31] J. W. Tukey, Convergence and uniformity in topology, Ann. of Math. Studies, no. 2, Princeton Univ. Press, Princeton, N. J., 1940. MR 2, 67. MR 0002515 (2:67a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.25

Retrieve articles in all journals with MSC: 54.25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0283749-X
Keywords: Closed projections, $ z$-closed projections, normal products, paracompact products, Lindelöf products, countably compact products, $ \mathfrak{m} - \mathfrak{n}$-compact products, $ \mathfrak{n}$-products, box products, products of closed maps
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society