Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On knots with nontrivial interpolating manifolds


Author: Jonathan Simon
Journal: Trans. Amer. Math. Soc. 160 (1971), 467-473
MSC: Primary 55.20
DOI: https://doi.org/10.1090/S0002-9947-1971-0288753-3
MathSciNet review: 0288753
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If a polygonal knot $ K$ in the $ 3$-sphere $ {S^3}$ does not separate an interpolating manifold $ S$ for $ K$, then $ S - K$ does not carry the first homology of either closed component of $ {S^3} - S$. It follows that most knots $ K$ with nontrivial interpolating manifolds have the property that a simply connected manifold cannot be obtained by removing a regular neighborhood of $ K$ from $ {S^3}$ and sewing it back differently.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217-231. MR 0278287 (43:4018a)
  • [2] A. Connor, Splittable knots, Ph.D. Thesis, University of Georgia, Athens, Ga., 1969.
  • [3] R. H. Fox, On the imbedding of polyhedra in $ 3$-space, Ann. of Math. (2) 49 (1948), 462-470. MR 10, 138. MR 0026326 (10:138c)
  • [4] F. Gonzales, On homology spheres, Ph.D. Thesis, Princeton University, Princeton, N. J., 1970.
  • [5] J. Hempel, A simply connected $ 3$-manifold is $ {S^3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154-158. MR 28 #599. MR 0157365 (28:599)
  • [6] W. Jaco, Heegaard splittings and splitting homomorphisms, Trans. Amer. Math. Soc. 144 (1969), 365-379. MR 40 #6555. MR 0253340 (40:6555)
  • [7] W. B. R. Lickorish, A representation of orientable combinatorial $ 3$-manifolds, Ann. of Math. (2) 76 (1962), 531-540. MR 27 #1929. MR 0151948 (27:1929)
  • [8] W. Magnus et al., Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617.
  • [9] L. Neuwirth, Interpolating manifolds for knots in $ {S^3}$, Topology 2 (1963), 359-365. MR 27 #6259. MR 0156335 (27:6259)
  • [10] D. Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Z. 101 (1967), 131-141. MR 36 #2137. MR 0219054 (36:2137)
  • [11] C. D. Papakyriakopoulos, A reduction of the Poincaré conjecture to other conjectures, Bull. Amer. Math. Soc. 68 (1962), 360-366. MR 26 #5548. MR 0148039 (26:5548)
  • [12] J. Simon, Some classes of knots with property P$ $, Topology of Manifolds, Markham, Chicago, Ill., 1970, pp. 195-199. MR 0278288 (43:4018b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55.20

Retrieve articles in all journals with MSC: 55.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0288753-3
Keywords: Knot, $ 2$-manifold, $ 3$-manifold, interpolating manifold, Property P$ $, homotopy $ 3$-sphere, cube-with-holes, cube-with-handles, Poincaré conjecture
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society