Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A theorem and a counterexample in the theory of semigroups of nonlinear transformations


Authors: Michael G. Crandall and Thomas M. Liggett
Journal: Trans. Amer. Math. Soc. 160 (1971), 263-278
MSC: Primary 47H99; Secondary 47D05
DOI: https://doi.org/10.1090/S0002-9947-1971-0301592-X
MathSciNet review: 0301592
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies the basic method in current use for constructively obtaining a generator from a given semigroup of nonlinear transformations on a Banach space. The method is shown to succeed in real two-dimensional Banach spaces and to fail in a particular three-dimensional example. Other results of independent interest are obtained. For example, it is shown that the concepts of ``maximal accretive'' and ``hyperaccretive'' (equivalently, $ m$-accretive or hypermaximal accretive) coincide in $ {R^n}$ with the maximum norm.


References [Enhancements On Off] (What's this?)

  • [1] H. Brezis and A. Pazy, Accretive sets and differential equations in Banach spaces, Israel J. Math. 8 (1970), 367-383. MR 0275243 (43:1000)
  • [2] F. E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89-113. MR 36 #6989. MR 0223942 (36:6989)
  • [3] M. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. (to appear). MR 0287357 (44:4563)
  • [4] J. Dorroh, Some classes of semi-groups of nonlinear transformations and their generators, J. Math. Soc. Japan 20 (1968), 437-455. MR 37 #6796. MR 0231241 (37:6796)
  • [5] S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214-222. MR 8, 51. MR 0016676 (8:51a)
  • [6] B. Grünbaum, On a theorem of Kirszbraun, Bull. Res. Council Israel Sect. F7 (1957/58), 129-132. MR 21 #5155. MR 0106423 (21:5155)
  • [7] T. Kato, Note on the differentiability of nonlinear semi-groups, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc., Providence, R. I., 1964, pp. 91-94. MR 0270208 (42:5100)
  • [8] -, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. MR 37 #1820. MR 0226230 (37:1820)
  • [9] Y. Kômura, Differentiability of nonlinear semigroups, J. Math. Soc. Japan 21 (1969), 375-402. MR 40 #3358. MR 0250118 (40:3358)
  • [10] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 29 #6319. MR 0169064 (29:6319)
  • [11] J. W. Neuberger, An exponential formula for one-parameter semi-groups of non-linear transformations, J. Math. Soc. Japan 18 (1966), 154-157. MR 34 #622. MR 0200734 (34:622)
  • [12] S. Oharu, Note on the representation of semi-groups of non-linear operators, Proc. Japan Acad. 42 (1966), 1149-1154. MR 36 #3167. MR 0220100 (36:3167)
  • [13] R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193-254. MR 21 #3669. MR 0104919 (21:3669)
  • [14] S. O. Schönbeck, On the extension of Lipschitz maps, Ark. Mat. 7 (1967), 201-209. MR 39 #3297. MR 0241962 (39:3297)
  • [15] G. F. Webb, Representation of semi-groups of nonlinear nonexpansive transformations in Banach spaces, J. Math. Mech. 19 (1969/70), 159-170. MR 40 #793. MR 0247528 (40:793)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H99, 47D05

Retrieve articles in all journals with MSC: 47H99, 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0301592-X
Keywords: Nonlinear semigroups, generator, accretive, extension theorem
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society