Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Identities involving the coefficients of a class of Dirichlet series. V


Author: Bruce C. Berndt
Journal: Trans. Amer. Math. Soc. 160 (1971), 139-156
MSC: Primary 30.24; Secondary 10.00
DOI: https://doi.org/10.1090/S0002-9947-71-99991-0
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We derive various forms of the Voronoï summation formula for a large class of arithmetical functions. These arithmetical functions are generated by Dirichlet series satisfying a functional equation with certain gamma factors. Using our theorems, we establish several arithmetical identities.


References [Enhancements On Off] (What's this?)

  • [1] B.C. Berndt, Generalised Dirichlet series and Hecke's functional equation, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 309-313. MR 37 #1325. MR 0225732 (37:1325)
  • [2] -, Arithmetical identities and Hecke's functional equation, Proc. Edinburgh Math Soc. (2) 16 (1968/69), 221-226. MR 40 #4212. MR 0250981 (40:4212)
  • [3] -, Identities involving the coefficients of a class of Dirichlet series. I, Trans. Amer. Math. Soc. 137 (1969), 345-359. MR 38 #4656.
  • [4] -, Identities involving the coefficients of a class of Dirichlet series. II, Trans. Amer. Math. Soc. 137 (1969), 361-374. MR 38 #4656. MR 0236360 (38:4656)
  • [5] -, Identities involving the coefficients of a class of Dirichlet series. III, Trans. Amer. Math. Soc. 146 (1969), 323-348. MR 40 #5551. MR 0252330 (40:5551)
  • [6] K. Chandrasekharan and Raghavan Narasimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. (2) 74 (1961), 1-23. MR 30 #1988. MR 0171761 (30:1988)
  • [7] -, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93-136. MR 25 #3911. MR 0140491 (25:3911)
  • [8] -, An approximate reciprocity formula for some exponential sums, Comment. Math. Helv. 43 (1968), 296-310. MR 40 #2617. MR 0249372 (40:2617)
  • [9] A. L. Dixon and W. L. Ferrar, Lattice-point summation formulae, Quart. J. Math. Oxford Ser. 2 (1931), 31-54.
  • [10] -, Some summations over the lattice points of a circle. I, Quart. J. Math. Oxford Ser. 5 (1934), 48-63.
  • [11] -, Some summations over the lattice points of a circle. II, Quart. J. Math. Oxford Ser. 5 (1934), 172-185.
  • [12] -, On the summation formulae of Voronoï and Poisson, Quart. J. Math. Oxford Ser. 8 (1937), 66-74.
  • [13] W. L. Ferrar, Summation formulae and their relation to Dirichlet's series, Compositio Math. 1 (1935), 344-360. MR 1556898
  • [14] -, Summation formulae and their relation to Dirichlet's series. II, Compositio Math. 4 (1937), 394-405. MR 1556983
  • [15] I. S. Gradšteĭn and I. M. Ryžik, Tables of integrals, series and products, 4th ed., Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York, 1965. MR 28 #5198; MR 33 #5952.
  • [16] A. P. Guinand, A class of self-reciprocal functions connected with summation formulae, Proc. London Math. Soc. (2) 43 (1937), 439-448.
  • [17] -, Summation formulae and self-reciprocal functions, Quart. J. Math. Oxford Ser. 9 (1938), 53-67.
  • [18] -, Summation formulae and self-reciprocal functions. II, Quart. J. Math. Oxford Ser. 10 (1939), 104-118.
  • [19] -, Finite summation formulae, Quart. J. Math. Oxford Ser. 10 (1939), 38-44.
  • [20] -, Integral modular forms and summation formulae, Proc. Cambridge Philos. Soc. 43 (1947), 127-129. MR 8, 198. MR 0017774 (8:198a)
  • [21] H. Hamburger, Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen $ \zeta $-Funktion äquivalent sind, Math. Ann. 85 (1922), 129-140. MR 1512054
  • [22] N. S. Koshliakov, Application of the theory of sum-formulae to the investigation of a class of one-valued analytical functions in the theory of numbers, Messenger Math. 58 (1929), 1-23.
  • [23] -, On Voronoï's sum-formula, Messenger Math. 58 (1929), 30-32.
  • [24] E. Landau, Vorlesungen über Zahlentheorie, Zweiter Band, Chelsea, New York, 1947.
  • [25] C. Nasim, A summation formula involving $ {\sigma _k}(n),k > 1$, Canad. J. Math. 21 (1969), 951-964. MR 40 #110. MR 0246841 (40:110)
  • [26] -, On the summation formula of Voronoï, Trans. Amer. Math. Soc. (to appear). MR 0284410 (44:1637)
  • [27] T. L. Pearson, Note on the Hardy-Landau summation formula, Canad. Math. Bull. 8 (1965), 717-720. MR 33 #2616. MR 0194406 (33:2616)
  • [28] W. Sierpiński, O pewnem zagadnieniu z rachunku funkcyj asymptotycznych, Prace Math.-Fiz. 17 (1906), 77-118.
  • [29] E. C. Titchmarsh, The theory of functions, 2nd ed., Clarendon Press, Oxford, 1939. MR 0197687 (33:5850)
  • [30] M. G. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. École Norm. Sup. (3) 21 (1904), 207-267, 459-533.
  • [31] -, Sur la développement, à l'aide des fonctions cylindriques, des sommes doubles $ \Sigma f(p{m^2} + 2qmn + r{n^2})$, où $ p{m^2} + 2qmn + r{n^2}$ est une forme positive à coefficients entiers (verhandlungen des Dritten Internat. Math.-Kongr, Heidelberg), Teubner, Leipzig, 1905, pp. 241-245.
  • [32] G. N. Watson, Theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944. MR 6, 64. MR 0010746 (6:64a)
  • [33] J. R. Wilton, On Dirichlet's divisor problem, Proc. Roy. Soc. A 134 (1931), 192-202.
  • [34] -, Voronoïs summation formula, Quart. J. Math. Oxford Ser. 3 (1932), 26-32.
  • [35] -, An approximate functional equation with applications to a problem of Diophantine approximation, J. Reine Angew. Math. 169 (1933), 219-237.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.24, 10.00

Retrieve articles in all journals with MSC: 30.24, 10.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-71-99991-0
Keywords: Arithmetical function, Voronoï summation formula, arithmetical identities, functional equation with gamma factors
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society