Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The bifurcation of solutions in Banach spaces


Author: William S. Hall
Journal: Trans. Amer. Math. Soc. 161 (1971), 207-218
MSC: Primary 47.80
DOI: https://doi.org/10.1090/S0002-9947-1971-0282267-2
MathSciNet review: 0282267
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L:D \subset X \to D \subset {X^ \ast }$ be a densely defined linear map of a reflexive Banach space X to its conjugate $ {X^\ast}$. Define M and $ {M^\ast}$ to be the respective null spaces of L and its formal adjoint $ {L^\ast}$. Let $ f:X \to {X^\ast}$ be continuous. Under certain conditions on $ {L^\ast}$ and f there exist weak solutions to $ Lu = f(u)$ provided for each $ w \in X,v(w) \in M$ can be found such that $ f(v(w) + w)$ annihilates $ {M^ \ast }$. Neither M and $ {M^\ast}$ nor their annihilators need be the ranges of continuous linear projections. The results have applications to periodic solutions of partial differential equations.


References [Enhancements On Off] (What's this?)

  • [1] S. Bancroft, J. K. Hale and D. Sweet, Alternative problems for nonlinear functional equations, J. Differential Equations 4 (1968), 40-56. MR 36 #3184. MR 0220118 (36:3184)
  • [2] J. Mawhin, Degré topologique et solutions périodiques des systèmes différentiels non linéaires, Bull. Soc. Roy. Sci. Liège 38 (1969), 308-398. MR 0594965 (58:28863)
  • [3] L. Cesari, Existence in the large of periodic solutions of hyperbolic partial differential equations, Arch. Rational Mech. Anal. 20 (1965), 170-190. MR 32 #1452. MR 0183976 (32:1452)
  • [4] J. K. Hale, Periodic solutions of a class of hyperbolic equations containing a small parameter, Arch. Rational Mech. Anal. 23 (1966), 380-398. MR 34 #6321. MR 0206503 (34:6321)
  • [5] O. Vejvoda, Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I, Czechoslovak Math. J. 14 (89) (1964), 341-382. MR 30 #5063. MR 0174872 (30:5063)
  • [6] P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967), 145-205. MR 34 #6325. MR 0206507 (34:6325)
  • [7] W. S. Hall, On the existence of periodic solutions for the equations $ {D_{tt}}u + {( - 1)^p}D_x^{2p}u = \varepsilon f( \cdot , \cdot ,u)$, J. Differential Equations 7 (1970), 509-526. MR 0265738 (42:647)
  • [8] -, Periodic solutions of a class of weakly nonlinear evolution equations, Arch. Rational Mech. Anal. 39 (1970), 294-322. MR 0274914 (43:672)
  • [9] J. L. Massera and J. J. Schäffer, Linear differential equations and function spaces, Pure and Appl. Math., vol. 21, Academic Press, New York, 1966. MR 35 #3197. MR 0212324 (35:3197)
  • [10] L. M. Graves, Some mapping theorems, Duke Math. J. 17 (1950), 111-114. MR 11, 729. MR 0035398 (11:729e)
  • [11] L. Nirenberg, Functional analysis, Lecture Notes, New York University, New York, 1961.
  • [12] W. A. Strauss, On the solutions of abstract nonlinear equations, Proc. Amer. Math. Soc. 18 (1967), 116-119. MR 36 #746. MR 0217657 (36:746)
  • [13] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.80

Retrieve articles in all journals with MSC: 47.80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0282267-2
Keywords: Bifurcation of solution, periodic solutions, partial differential equations
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society