REPAIRING EMBEDDINGS OF 3-CELLS WITH MONOTONE MAPS OF E^3 (1)

BY
WILLIAM S. BOYD, JR.

Abstract. If S_1 is a 2-sphere topologically embedded in Euclidean 3-space E^3 and S_2 is the unit sphere about the origin, then there may not be a homeomorphism of E^3 onto itself carrying S_1 onto S_2. We show here how to construct a map f of E^3 onto itself such that $f|S_1$ is a homeomorphism of S_1 onto S_2, $f(E^3 - S_1) = E^3 - S_2$ and $f^{-1}(x)$ is a compact continuum for each point x in E^3. Similar theorems are obtained for 3-cells and disks topologically embedded in E^3.

1. Introduction. In this paper we show that, for any 2-sphere S wildly embedded in Euclidean 3-space E^3, there is a monotone upper semicontinuous decomposition G of E^3 whose nondegenerate elements miss S such that E^3/G is E^3 and S is taken to a tame 2-sphere in E^3/G. If X is a wildly embedded set in a 3-manifold M^3, we will say that the embedding of X can be repaired (see [1]) if there exists a monotone upper semicontinuous decomposition G of M^3 such that each non-degenerate element of G is disjoint from X, $M^3/G = M^3$, and the image of S under the natural projection of M^3 onto M^3/G is tamely embedded in M^3/G. The main theorem of this paper, Theorem 1, says that any 3-cell in E^3 can be repaired. It follows as a corollary of this theorem and a theorem of Hosay [11] and Lininger [14] that any wild embedding of a 2-sphere can be repaired. Another corollary using recent results of Daverman and Eaton [8] is that any 2-cell in E^3 and many arcs in E^3 can be repaired. In §3, we construct a decomposition of the complement of a 3-cell in S^3. It is a kind of triangulation respecting wild embeddings which is difficult to state as a theorem. Therefore, we have been content just with giving a loose description of the decomposition and then proceeding with the construction.

The notation and terminology is largely standard. A cube-with-handles is a space homeomorphic to a regular neighborhood in the 3-sphere S^3 of a finite 1-complex and a cube-with-holes is a space homeomorphic to the closure of the complement of a cube-with-handles in S^3. The distance between two points x and y in any

Presented to the Society, December 24, 1968 under the title Repairing embeddings of 2-spheres in E^3 with monotone maps; received by the editors December 30, 1969.

Key words and phrases. Wild sphere, tame sphere, monotone map, upper semicontinuous decomposition, crumpled cube, repairing embeddings.

(1) This paper is a revised version of the author’s Ph.D. Thesis which was prepared under the supervision of Professor R. J. Bean at the University of Tennessee. The author would like to express his appreciation to Professor Robert J. Daverman, who suggested the mapping problem considered in this paper.

Copyright © 1971, American Mathematical Society
metric space under consideration will be denoted by \(\rho(x, y) \) and \(N(A, r) \) will denote the set of all points \(x \) such that \(\rho(x, A) < r \). If \(\sigma \) is a simplex in a space \(X \) with triangulation \(T \), we will use \(St(\sigma) \) to denote the point set interior in \(X \) of the star of \(\sigma \) in the triangulation \(T \). The \(j \)-skeleton of a triangulation \(T_j \) will be denoted by \(T_j^\bullet \). A Sierpinski curve is the space obtained from a 2-sphere \(S \) by deleting the interiors of a null sequence of mutually disjoint disks in \(S \) whose union is dense in \(S \). If \(X \) is a Sierpinski curve in \(S \) obtained by removing the interiors of the disks \(\{D_i\} \), then the accessible part of \(X \) is the set \(\bigcup \text{Bd} D_i \), and the inaccessible part of \(X \), here denoted by \(\text{Inacc}(X) \), is the set of all points of \(X \) which do not lie in the accessible part of \(X \). We have frequently abbreviated piecewise linear to pwl.

2. Some preliminary lemmas. Lemma 3 below is needed in the construction in §3. Lemma 1 can be proved as in Theorem 4.1 of [3].

Lemma 1. Let \(D \) be a disk, \(X \) a Sierpinski curve lying in a 2-sphere \(S \), \(D \cap X = (\text{Bd} \ D) \cap X = \emptyset \), \(A \) an arc lying in the inaccessible part of \(X \). Then there is a null sequence of mutually disjoint disks \(E_1, E_2, E_3, \ldots \) on \(D - A \) such that \(D \cap S \subset A \cup (\bigcup E_i) \) such that, for any \(\epsilon > 0 \) and any point \(p \in A \), there is a neighborhood \(N \) of \(p \) in \(D \) so that only disks \(E_i \) of diameter \(< \epsilon \) intersect \(N \).

Lemma 2. Let \(\epsilon > 0 \). Let \(C \) be a wild cell in \(E^3 \), \(X \) a tame Sierpinski curve in \(\text{Bd} C \), and \(S \) a 2-sphere. Suppose that \(G: S \times [0, 1] \rightarrow E^3 \) is a homeomorphism which is locally piecewise linear mod \(S \times 0 \), \(G(S \times 0, 1] \) lies in the unbounded complementary domain of \(G(S \times 0) \), \(G(S \times 0) \cap \text{Bd} C = X \), and \(G(S \times 0) \) is tame. Let \(T_1 \) and \(T_2 \) be triangulations of \(S \) such that \(T_2 \) refines \(T_1 \) and \(G(T_2 \times 0) \) lies in the inaccessible part of \(X \). Then, for some integer \(\xi \), there is a homeomorphism \(H \) from \(S \times [0, 1/2^\xi] \) into \(E^3 \), which is locally piecewise linear mod \(S \times 0 \), such that

1. \(\rho(H(x, t), \ G(x, t)) < \epsilon \) for all \(x \in S \) and all \(t \in [0, 1/2^\xi] \),
2. for all \(v \in T_2^\circ \), \(H(v \times (0, 1/2^\xi)) \cap C = \emptyset \),
3. for all \(\sigma \in T_2^\circ \) and \(n = 0, 1, 2, 3, \ldots \), \(G(\sigma \times 1/2^{\xi+n}) \cap C = \emptyset \),
4. for all \(x \in S \), \(H(x, 0) = G(x, 0) \),
5. if \(G \) has properties (2) and (3) with respect to \(T_1 \), then \(H(x, t) = G(x, t) \) for all \((x, t) \in T_1^\circ \times (0, 1/2^\xi) \) and \(H(T_1^\circ \times (0, 1/2^\xi)) = G(T_1^\circ \times (0, 1/2^\xi)) \).

Proof. First we obtain condition (2). Let \(v_1, v_2, v_3, \ldots, v_k, v_{k+1}, \ldots, v_l \) be the vertices of \(T_2 \) with \(v_1, v_2, \ldots, v_k \) being those vertices for which \(G(v_i \times (0, 1]) \cap C = \emptyset \). We will show how to adjust \(G \) so that \(G(v_{k+1} \times (0, 1/2^\xi]) \cap C = \emptyset \) for some nonnegative integer \(\eta \), so that \(G(v_i \times (0, 1]) \cap C = \emptyset \), \(i = 1, 2, \ldots, k \), and so that, if \(T_1^\circ \subset \{v_1, v_2, \ldots, v_k\} \), then \(G|T_1^\circ \times (0, 1] \) is left unaltered.

To do this, let \(v = v_{k+1} \) and suppose that \(\sigma \) and \(\tau \) are 1-simplexes in \(T_2^\circ \) such that \(\sigma \cap \tau = v \). Let \(A = \sigma \cup \tau \) and \(D \) be the disk \(G(A \times [0, 1]) \). By Lemma 1, there is a null sequence \(E_1, E_2, E_3, \ldots \) of mutually disjoint disks in \(D \) such that \(D \cap C \subset G(A \times 0) \cup (\bigcup E_i) \), and, for each \(i = 1, 2, 3, \ldots \), \(G(A \times 0) \cap E_i = \emptyset \). Let \(\alpha \) be a
is a single point \(p \). Let \(\beta \) be the subarc of \(G(v \times [0, 1]) \) joining \(G(v \times 0) \) and \(p \). If \(D' \) is the disk in \(D \) bounded by \(\alpha \cup G(A \times 0) \), then there is a homeomorphism \(f \) of \(D' \) onto itself, which is locally piecewise linear mod \(\alpha \), fixed on \(\text{Bd} \ D' \), so that \(f(\beta) \cap (\bigcup E_i) = \emptyset \). By extending \(f \) piecewise linearly in a sufficiently close neighborhood \(N \) of \(\text{Int} \ D' \) so that \(f \) is fixed on \(\text{Bd} \ N \) and then extending this map to all of \(E^3 \) by the identity, we obtain a map \(f \) such that \(f \circ g \) satisfies requirement (2) for some integer \(\xi \) and the vertex \(v_{k+1} \). Similarly, we alter \(G \) near each of the vertices \(v_{k+2}, v_{k+3}, \ldots, v_1 \) to obtain a homeomorphism \(G_1 \) of \(S \times [0, 1] \), locally piecewise linear mod \(S \times 0 \), such that \(G_1|S \times 0 = G|S \times 0 \) and, for all \(v \in T_2^n \) and some sufficiently large integer \(\eta \), \(G_1(v \times (0, 1/2^n)) \cap C = \emptyset \).

Adjusting \(G_1 \) to obtain a homeomorphism \(G_2 \) satisfying conditions (2) and (3) is similar. Let \(\sigma \in T_2^n \) with \(\text{Int} \sigma \cap T_1^\perp = \emptyset \) if \(G_1 \) satisfies (2) and (3) (replacing \(T_2 \)) with \(T_1 \) and \(H \) with \(G_1 \). Note that we may suppose that \(G_1 \) satisfies (2) and (3) if \(G \) does. Let \(\{v, v'\} = \text{Bd} \sigma \). Lemma 1 can be used to obtain a sequence of “horizontal” arcs in \(G_1(\sigma \times [0, 1/2^n]) \) spanning from \(G_1(\sigma \times [0, 1/2^n]) \) to \(G_1(v' \times [0, 1/2^n]) \) and converging to \(G_1(\sigma \times 0) \) and “vertical” arcs from \(G_1(\sigma \times 0) \) to the interiors of the horizontal spanning arcs. By a suitable choice of these arcs, it is possible to define \(G_2 \) on \(\sigma \times 1/2^r \) for some \(r \geq \eta \) and all \(n = 0, 1, 2, \ldots \) in such a way that it extends \(G_2|S \times 0 = G_1|S \times 0 \). The “vertical” arcs are used to make the “horizontal” arcs converge on \(G_2(S \times 0) = G_1(S \times 0) \) homeomorphically and together they decompose \(G_1(\sigma \times [0, 1/2^n]) \) into disks so that \(G_2 \) can then be extended to take all of \(\sigma \times [0, 1/2^n] \) onto \(G_1(\sigma \times [0, 1/2^n]) \). Doing this for each \(\sigma \in T_2^n \), we then have

\[
G_2: T_2^n \times [0, 1/2^n] \rightarrow G_1(T_2^n \times [0, 1/2^n])
\]

such that \(G_2|T_2^n \times 0 = G|T_1^n \times 0 \) and, for some \(\nu \geq \eta \), \(G_2(T_2^n \times 1/2^r + \nu) \cap C = \emptyset \) for each \(n = 0, 1, 2, \ldots \). Furthermore, \(G_2 \) can be taken to be locally piecewise linear mod \(T_2^n \times 0 \). Let \(G_2|S \times 0 = G_1|S \times 0 \) and \(G_2|S \times 1/2^n = G_1|S \times 1/2^n \). Then \(G_2 \) is defined on the boundary of each cell \(\tau \times [0, 1/2^n] \), \(\tau \in T_2^n \), and can be extended to take this cell into \(G_1(\tau \times [0, 1/2^n]) \) so that \(G_2 \) satisfies all the conditions of the lemma except possibly (1). Condition (1) is met by using the fact that \(G_2(x, 0) = G(x, 0) \) for all \(x \in S \) and choosing \(\xi \geq \nu \geq \eta \). For this choice of \(\xi \), we set \(H = G_2|S \times [0, 1/2^n] \). This completes the proof of Lemma 2.

The following lemma is a modification of Lemma 2 of a paper by D. R. McMillan, Jr. [15].

Lemma 3. Let \(C \) be a 3-cell and \(h: C \rightarrow E^3 \) a homeomorphism. There is a monotone decreasing sequence \(\{\zeta_n\}, 0 < \zeta_n \leq 1/n, \) and for each \(n, \) a pwl homeomorphism

\[
H_n: \text{Bd} \ C \times [-\zeta_n, \zeta_n] \rightarrow E^3
\]
with the following properties:

(i) \(\rho(h(x), H_n(x,t)) < 1/n \), for all \(x \in \text{Bd } C \) and \(t \in [-\zeta_n, \zeta_n] \),

(ii) \(H_n(\text{Bd } C, -\zeta_n) \subset \text{Int } h(C) \),

(iii) \(h(C) \cap H_n(\text{Bd } C, \zeta_n) \) is covered by the interiors of a finite disjoint collection of 2-cells in \(H_n(\text{Bd } C, \zeta_n) \) each of diameter less than \(1/n \),

(iv) for all \(n \), there exists a finite disjoint collection of topological 3-cells \(C^n_1, C^n_2, \ldots, C^n_k \) in \(h(C) \) such that \(C^n_i \) has diameter less than \(1/n \) and meets \(h(\text{Bd } C) \) precisely in a 2-cell such that \(h(\text{Bd } C) - H_n(\text{Bd } C \times [-\zeta_n, \zeta_n]) \) is covered by the interiors of these 2-cells and such that

\[\text{Bd } C^n_i - \text{Int } (C^n_i \cap h(\text{Bd } C)) \subset H_n(\text{Bd } C \times [-\zeta_n, \zeta_n]). \]

Furthermore, there is a sequence of triangulations \(T_1, T_2, \ldots \) of \(\text{Bd } C \) such that mesh \(h(T_n) < 1/n \), \(h(T^n_1) \) is a tame finite graph and \(T_{n+1} \) refines \(T_n \); there is a sequence of homeomorphisms \(G^n : \text{Bd } C \times [-\zeta_n, \zeta_n] \to E^3 \) which are locally piecewise linear mod \(\text{Bd } C \times 0 \) satisfying the following properties:

1. \(\rho(h(x), G^n(x,t)) < 1/n \), for all \(x \in \text{Bd } C \), \(t \in [-\zeta_n, \zeta_n] \),

2. \(G^n(\text{Bd } C \times \zeta_n) = H_n(\text{Bd } C \times \zeta_n) \),

3. \(G^n \) is a tame Sierpinski curve in \(A(\text{Bd } C) \) such that \(h(\text{Bd } C) \cap \text{Int } (C^n_i \cap h(\text{Bd } C)) \subset H_n(\text{Bd } C \times [-\zeta_n, \zeta_n]) \),

4. \(G^n(x, 0) = h(x) \), for any \(x \in T^n_1 \),

5. \(G^n(T^n_i \times \zeta_n) \cap h(C) = \emptyset \), for all \(i \in \mathbb{N} \),

6. \(G^n(T^n_1 \times \zeta_n) \cap h(C) = \emptyset \), for all \(i \geq n \),

7. for each \(n \) and each \(n' \), \(n' = 1, 2, \ldots, n-1 \),

\[G^n(T^n_1 \times [0, \zeta_n]) = G^n(T^n_1 \times [0, \zeta_n]), \]

8. for each \(n \) and each \(n' \), \(n = 1, 2, \ldots, n-1 \), each component of

\[G^n(\text{Bd } C \times [-\zeta_n, \zeta_n]) \cap G^n(\text{T}^{n'}_1 \times (\zeta_n, \zeta_n')) \]

is a closed set missing

\[G^n(\text{T}^{n'}_1 \times \zeta_n) \cup G^n(\text{T}^{n'}_n \times \zeta_n) \cup G^n(\text{T}^{n'}_n \times (\zeta_n, \zeta_n')). \]

Proof. Step 1. Construction of \(G_1, H_1, T_1 \). Let \(\varepsilon = 1 \) and let \(\delta \) be a positive number such that for any homeomorphism \(g : \text{Bd } C \to E^3 \) differing from \(h|\text{Bd } C \) by less than \(\delta \) and for any compact set \(Y \) in \(g(\text{Bd } C) \) whose components have diameter less than \(\delta \), then there is a finite collection of \(\varepsilon \)-disks in \(g(\text{Bd } C) \) such that \(Y \) lies in the union of the interiors of these disks. Let \(T^n_1 \) be a triangulation of \(\text{Bd } C \) such that \(h(T^n_1) \) has mesh less than \(\varepsilon \) and \(h(T^n_1) \) is tame [2]. Let \(X_1 \) be a tame Sierpinski curve in \(h(\text{Bd } C) \) such that \(h(T^n_1) \cap \text{Inacc } (X_1) \) and the diameter of each component of \(h(\text{Bd } C) - X_1 \) is less than \(\delta \) [6, Theorem 9.1]. Let \(g_1 : \text{Bd } C \to E^3 \) be a homeomorphism obtained by pushing \(h(\text{Bd } C) - X_1 \) slightly into \(h(C) \) so that \(g_1 \) is locally pwl mod \(h^{-1}(X_1) \), differs from \(h \) by less than \(\delta \), \(g_1|h^{-1}(X_1) = h|h^{-1}(X_1) \), and the closures of components of \(h(C) - g_1(\text{Bd } C) \) form a null sequence of 3-cells \(C^1_1, C^2_1, C^3_1, \ldots \).
Since \(g_1(Bd C) \) is locally tame mod a tame Sierpinski curve, it is tame [6, Theorem 8.2]. It follows from the tameness of \(g_1(Bd C) \) and Theorem 2 of [5] that there is a homeomorphism \(G_1: Bd C \times [-1, 1] \rightarrow E^3 \) which is locally pwl mod \(Bd C \times 0 \) satisfying \(G_1(x, 0) = g_1(x) \) for all \(x \in Bd C \), \(G_1(Bd C \times -1) \subset \text{Int } h(C) \), and condition (1). By Lemma 2, we may suppose that \(G_1 \) satisfies conditions (5) and (6). Take \(H_1 \) to be a sufficiently close pwl approximation to \(G_1 \) using Theorem 3 of [5] in order to obtain conditions (2) and (3). There is a \(k \) such that \(C_1^1, C_2^1, \ldots, C_k^1 \) are the only cells of the null sequence not lying in \(H_1(Bd C \times (-1, 1)) \) and these cells are the ones of condition (iv). By our choice of \(\delta \), \(H_1 \) satisfies condition (iii).

Step 2. Construction of \(G_n, H_n, T_n \). Choose \(\delta \) as in Step 1, but with \(\epsilon = 1/n \). Choose a Sierpinski curve \(X_n \) by adding on to \(X_{n-1} \) in the following way. Let \(D_1, D_2, \ldots, D_n \) be those component disks of \(h(Bd C) \setminus \text{Inacc} (X_{n-1}) \) such that the diameter \(D_i \geq \delta \) or \(\rho(x, G_{n-1}(x, 0)) \geq \delta \) for some \(x \in D_i \). We add these disks back on to \(X_{n-1} \) and remove a null sequence of disks from their interiors to obtain \(X_n \) such that components of \(h(C) - X_n \) have diameter \(<\delta \). Let \(T_n \) be a triangulation of \(Bd C \) such that \(h(T_n^2) \) is a finite graph in the inaccessible part of \(X_n, T_n \) refines \(T_{n-1} \), and mesh \(h(T_n^2) < 1/n \) [2], [6].

We obtain \(g_n \) as we did \(g_1 \), but in a more careful way to get \(g_n: Bd C \rightarrow h(C) \) such that \(g_n((Bd C - h^{-1}((-1, 1) \cup \text{Int } D_i))) = G_{n-1}((Bd C - h^{-1}((-1, 1) \cup \text{Int } D_i))) \times 0 \) by pushing the little disks in \(\bigcup D_i \) into \(\text{Int } h(C) \) but not so far as \(D_i \) was pushed by \(G_{n-1} \) on \(Bd C \times 0 \) nor as far as \(\delta \). Thus \(\rho(g_n(x), h(x)) < \delta \) and \(g_n(h^{-1}(D_i)) \cup G_{n-1}(h^{-1}(D_i)) \times 0 \) bounds a little cell \(C_i^1 \) containing \(g_n(h^{-1}(D_i)) \). Let \(N \) be a neighborhood of \(h(T_{n-1}^2) \) in \(E^3 \) such that \((C\text{l } N) \cap (\bigcup C_i^1) = \emptyset \). Let \(N_1 \) be a neighborhood of \(\bigcup C_i^1 \) missing \(\text{Cl } N \). We take a space homeomorphism \(f \) fixed outside \(N \) which moves

\[
G_{n-1}(Bd C \times 0)
\]

onto \(g_n(Bd C) \) as follows: The \(C_i^1 \)'s are tame [6, Theorem 8.2], so fatten the \(C_i^1 \)'s in \(N_1 \) except at \(Bd D_i \)'s to form cells and move \(G_{n-1}(h^{-1}(D_i)) \times 0 \) onto \(g_n(h^{-1}(D_i)) \). We do this inside the fattened \(C_i^1 \)'s in such a way that \(f \) is fixed on \(h(Bd C) \setminus \bigcup \text{Int } D_i \) and on \(G_{n-1}((-1, 1) \cup \text{Int } D_i)) \times 0 \), and so that \(f \circ G_{n-1}(x, 0) = g_n(x) \) for all \(x \in Bd C \). Extend \(f \) to a homeomorphism of \(E^3 \) onto itself which is fixed outside of the fattened \(C_i^1 \)'s.

We obtain \(g_n \) from \(f \circ G_{n-1} \). Choose a power \(t_n \) of \(1/2, 0 < t_n \leq \delta_{n-1} \), so small that \(G_{n-1}(T_{n-1}^1 \times [-t_n, t_n]) \subset N \) and, for all \(x \in Bd C, \rho(h(x), G_{n-1}(x, t)) < 1/n \). In order to get property (8), we also choose \(t_n \) so small that

\[
f \circ G_{n-1}(h^{-1}(\bigcup D_i) \times [-t_n, t_n]) \cap G_{n}(T_{n}^1 \times \xi_{n}/2^j) = \emptyset,
\]

for \(n' = 1, 2, \ldots, n - 1 \) and \(j = 0, 1, 2, \ldots \), and so small that

\[
f \circ G_{n-1}(h^{-1}(\bigcup D_i) \times [-t_n, t_n]) \cap G_{n}(v \times (0, \xi_{n}^j)) = \emptyset,
\]

for \(n' = 1, 2, \ldots, n - 1 \) and \(v \in T_{n}^0 \). These last two conditions can be met, because \(h(C) \) misses \(G_{n}(T_{n}^1 \times \xi_{n}/2^j) \) and \(G_{n}(v \times (0, \xi_{n}^j)) \), while \(f \circ G_{n-1}(h^{-1}(\bigcup D_i) \times 0) \)
= g_n(h^{-1}({\cup D_i})) \text{ lies in } h(C). \text{ Set } G'_n = f \circ G_{n-1} | \text{Bd} C \times [-t_n, t_n] \text{ and make it locally pwl mod Bd } C \times 0 \text{ without changing its values on }

\text{(Bd } C \times 0) \cup (T^1_{n-1} \times [-t_n, t_n])

by using Theorem 3 of [5] in such a manner as preserve property (8).

We use Lemma 2 to get \(G_n : \text{Bd } C \times [-t_n, t_n] \rightarrow E^3 \), for some power \(\zeta_n \) of \(\frac{1}{2} \), from \(G'_n \). In applying Lemma 2 we choose \(\epsilon \) sufficiently small to preserve properties (1) and (8). Lemma 2 gives us properties (5) and (6) without destroying (4) or (7).

We obtain \(H_n \) from \(G_n \) as we obtained \(H_1 \) from \(G_1 \) using Theorem 3 of [6]. This also gives properties (2) and (3).

3. A decomposition. Cube-with-holes decompositions. For convenience, we make the following definition: A cube-with-holes decomposition of a space \(X \) is a “triangulation” of \(X \) with cubes-with-holes replacing 3-simplexes and disks-with-handles replacing their 2-faces. In a cube-with-holes decomposition we will allow each cube-with-holes to have any finite number of faces, not just four as in a simplicial 3-complex. In this section we construct a cube-with-holes decomposition of the complement in \(S^3 \) of a wild 3-cell. In this case all but one cube-with-holes has five faces; the one has many more faces. Some of the disks-with-handles have four 1-faces, each a 1-simplex, whereas, others have three 1-faces.

Let \(C \) be a 3-cell and let \(h : C \rightarrow S^3 \) be a topological embedding of \(C \). We construct a sequence of triangulations \(T_1, T_2, \ldots \) of \(\text{Bd } C \) with mesh \(h(T_i) \rightarrow 0 \) as \(i \rightarrow \infty \) and, with \(T_{i+1} \) refining \(T_i \). Our decomposition of \(S^3 - h(C) \) is into small cubes-with-holes \(\Gamma_{\sigma,m} \) with \(\sigma \) being a 2-simplex of \(T_{m-1} \). For a fixed \(m, m \geq 2 \), the \(\Gamma_{\sigma,m} \) may be thought of as lying in a shell, \(S_m \), about \(h(C) \) and this shell, which is a 3-manifold with two boundary components (actually a cell-with-handles with a cell-with-handles containing \(h(C) \) removed from its interior), consists of

\[\cup \{ \Gamma_{\sigma,m} : \sigma \in T^2_{m-1} \} \]

The shell \(S_{m+1} \) formed by \(\cup \{ \Gamma_{\sigma,m+1} : \sigma \in T^2_m \} \) is the next shell in toward \(h(C) \) from the one formed by \(\cup \{ \Gamma_{\sigma,m} : \sigma \in T^2_{m-1} \} \), and \(S_{m+1} \cap S_m \) is the outer boundary of \(S_{m+1} \) and the inner boundary of \(S_m \). \(\Gamma_{\sigma,m} \), for \(m = 1 \), is a single cube-with-holes \(\Gamma_1 \), with \(\Gamma_1 \) being the closure of the complementary domain of \(S_2 = \cup \Gamma_{\sigma,2} \) not containing \(h(C) \). Schematically the situation is shown in Figure 1.

Each shell \(S_m \) is a thickened sphere or hollow ball with holes and handles (see Figure 2). The shell’s two surfaces are divided into disks-with-handles in the same pattern into which \(h(T^2_{m-1}) \) divides \(\text{Bd } h(C) \); the shell itself is like a Cartesian product of a sphere and an interval with handles added to the “outer” boundary and removed from the “inner” boundary so that the shell lies in \(S^3 - h(C) \). Figure 3 shows what a cross-section of such a shell might look like. It is a union of cubes-with-holes, each having five faces, with each face being a disk-with-handles. Any two of the cubes-with-holes intersect along a disk-with-handles face or a
1-simplex in the boundary of such a face or not at all. If σ is a 2-simplex of T_{m-1}, then $\Gamma_{e,m}$ is the cube-with-holes “above” $h(\sigma)$ in the mth shell S_m.

First we construct a sequence of triangulations T_1, T_2, \ldots of $\text{Bd } C$ and a sequence of cubes-with-handles M_1, M_2, \ldots converging to $h(C)$ such that $M_m = L_m \cup (\bigcup_{i=1}^{k_m} H^n_i)$, L_m is a tame 3-cell and each H^n_i, $i = 1, 2, \ldots, k_m$, is a small cube-with-handles such that $L_m \cap H^n_i = F^n_i$ is a disk in $\text{Bd } L_m \cap \text{Bd } H^n_i$. On each L_m we will
put a copy of T^4_{m-1} which will have a collar running down to a copy of T^4_{m+1} on L_{m+1} dividing up the space between $Bd M_m$ and $Bd L_{m+1}$. By adjusting this collar it will miss $Bd M_{m+1}$ except in the copy of T^4_{m-1} on $Bd L_{m+1}$ and divide up the space between $Bd M_m$ and $Bd M_{m+1}$ into cubes-with-holes in such a fashion that any two will intersect along a common disk-with-handles in their boundaries or along an arc in the boundary of such a disk-with-handles, or not at all. In this fashion we get a cube-with-holes decomposition of $S^3 - h(C)$. Each cube-with-holes, $\Gamma_{\sigma,m}$, will be named by the triangulation $T_m - 1$ and the 2-simplex $\sigma \in T_m - 1$ associated with it by a map G_{σ_m}, given by Lemma 3. The size of $\Gamma_{\sigma,m} \to 0$ as $m \to \infty$ and if $\sigma_1, \sigma_2, \ldots$ is a sequence of 2-simplexes with $\sigma_i \in T^2$ and σ_{i+1} lying in σ_i, then $\Gamma_{\sigma_{m+1}} \to \Gamma_{\sigma_m}$ as $m \to \infty$.

Construction of M_1. Consider $G_1: Bd C \times [-\zeta_1, \zeta_1] \to E^3$ and T^1 from Lemma 3. Choose e_1 as follows:

(a) $e_1 < \eta_1$, where η_1 is less than $\frac{1}{3}$ the distance from $G_1(v \times [0, \zeta_1])$ to

$$G_1((T^1 - \text{St}(v)) \times [0, \zeta_1])$$

for each $v \in T^0_1$.

(b) e_1 less than $\frac{1}{3}$ the distance from $G_1(\sigma \times [0, \zeta_1]) - N(G_1(Bd \sigma \times [0, \zeta_1]), \eta_1)$ to $G_1((T^1 - \text{Int} \sigma) \times [0, \zeta_1])$ for every $\sigma \in T^1_1$.

Condition (a) says any e_1-set intersecting $N(G_1(v \times [0, \zeta_1]), \eta_1)$ cannot intersect $G_1(T^1_1 \times [0, \zeta_1])$ outside $G_1(\text{St}(v) \times [0, \zeta_1])$. Condition (b) says any e_1-set intersecting $G_1(\sigma \times [0, \zeta_1])$ but not $N(G_1(Bd \sigma \times [0, \zeta_1]), \eta_1)$ cannot intersect $G_1(T^1_1 \times [0, \zeta_1])$ except in $G_1(\text{Int}(\sigma) \times [0, \zeta_1])$. Together, these conditions imply that any e_1-set intersecting $G_1(T^1_1 \times [0, \zeta_1])$ lies in $G_1((\text{St}(\sigma^0) \cap T^1_1) \times [0, \zeta_1])$ for some $\sigma^0 \in T^0_1$—that is, any e_1-set intersecting $G_1(T^1_1 \times [0, \zeta_1])$ intersects it only in fins radiating from one post $G_1(\sigma^0 \times [0, \zeta_1])$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Following McMillan’s Theorem 1 of [15] and using Lemma 3, we find an integer \(n_1 \) such that \(1/n_1 < \delta_1/3 \), where \(\delta_1 \) is a positive number chosen as McMillan does \(\delta \) in his Theorem 1 for \(\varepsilon = \varepsilon_1 \). We use \(H_{n_1} \), as given by Lemma 3 above, for his \(H \) in his Theorem 1. This gives a cube-with-handles \(M_1 = L_1 \sqcup (\bigcup_{i=1}^{k_1} H^1_i) \), where \(L_1 \) is a cube with \(\text{Bd} \ L_1 \) \(\varepsilon_1 \)-homeomorphic to \(h(\text{Bd} \ C) \) and each \(H^1_i \) is an \(\varepsilon_1 \)-cube-with-handles for each \(i = 1, 2, \ldots, k_1 \); \(h(C) \) lies in \(\text{Int} \ M_1 \). By Lemma 3, condition (7),
\[
G_{n_1}(T^1_1 \times [0, \zeta_{n_1}]) = G_1(T^1_1 \times [0, \zeta_{n_1}]) \subset G_1(T^1_1 \times [0, \zeta_1])
\]
so that the \(\varepsilon_1 \)-set intersection properties prescribed by conditions (a) and (b) above for \(G_1 \) and \(T_1 \) hold also for \(G_{n_1} \) and \(T_1 \).

Construction of \(M_m \). We assume \(M_{m-1} \) is already constructed. We construct \(M_m \) just as \(M_1 \) but with additional restrictions on the closeness of \(M_m \) to \(h(C) \). Choose \(\varepsilon_m \) as follows:

(a) \(\varepsilon_m < \eta_m \), where \(\eta_m \) is less than \(\frac{1}{2} \) the distance from \(G_m(v \times [0, \zeta_m]) \) to
\[
G_m(\{T^1_m - \text{St}(v)\} \times [0, \zeta_m])
\]
for each \(v \in T^*_m \).

(b) \(\varepsilon_m \) less than \(\frac{1}{2} \) the distance from \(G_m(\sigma \times [0, \zeta_m]) - N(G_m(\text{Bd} \ \sigma \times [0, \zeta_m], \eta_m)) \) to
\[
G_m(\{T^1_m - \text{Int} \ \sigma\} \times [0, \zeta_m])
\]
for every \(\sigma \in T^*_m \).

Conditions (a) and (b) insure that any \(\varepsilon_m \)-set intersecting \(G_m(T^1_m \times [0, \zeta_m]) \) lies in \(G_m(\text{St}(\sigma^0) \times [0, \zeta_m]) \) for some \(\sigma^0 \in T^0_m \).

(c) \(\varepsilon_m < \rho(h(C), \text{Bd} \ M_{m-1}) \).

(d) \(\varepsilon_m < 1/m \).

(e) \(\varepsilon_m < \varepsilon_{m-1} \).

We choose an integer \(n_m > n_{m-1} > \cdots > n_1 \) such that \(1/n_m < \delta_m/3 \), where \(\delta_m \) is chosen as \(\delta \) in McMillan’s Theorem 1 for \(\varepsilon = \varepsilon_m \). We use \(H_{n_m} \) from Lemma 3 for his \(H \) in his Theorem 1. With this \(H \) his Theorem 1 gives \(M_m = L_m \sqcup (\bigcup_{i=1}^{k_m} H^m_i) \) with \(\text{Bd} \ L_m \) \(\varepsilon_m \)-homeomorphic to \(h(\text{Bd} \ C) \), \(L_m \) a cell in an \(\varepsilon_m \)-neighborhood of \(h(C) \), and each \(H^m_i, i = 1, 2, \ldots, k_m \), an \(\varepsilon_m \)-cube-with-handles. We also have
\[
h(C) \subset \text{Int} \ M_m \subset M_m \subset \text{Int} \ M_{m-1}.
\]
By Lemma 3, \(G_{n_m}(T^1_m \times [0, \zeta_{n_m}]) = G_n(T^1_n \times [0, \zeta_{n_m}]) \) so that conditions (a) and (b) tell us that any \(\varepsilon_m \)-set intersecting \(G_{n_m}(T^1_m \times [0, \zeta_{n_m}]) \) lies in \(G_{n_m}(\text{St}(\sigma^0) \times [0, \zeta_{n_m}]) \) for some \(\sigma^0 \in T^0_m \). According to McMillan’s theorem, \(H^m_i \cap L_m = F^m_i \) is a disk in \(\text{Bd} \ H^m_i \) and in \(\text{Bd} \ L_m \). The rest of the proof will consist mostly of simplifying intersections between the \(M_m \) and the “collars” \(G_{n_m-1}(T^1_{n-1} \times [0, \zeta_{n_m-1}]) \) of \(h(C) \) by altering the “collars”.

Before going on let us make the following simplification in notation. Rename \(G_{n_m} \) and \(\zeta_{n_m} \). We will use \(G_m \) instead of \(G_{n_m} \) and \(\zeta_m \) instead of \(\zeta_{n_m} \).

Simplifying intersections with \(F^m_i \). We would like to say that \(G_m(T^1_m \times \zeta_m) \) lies in \(L_m - \bigcup F^m_i \). To achieve this we must look at how McMillan arrives at the \(F^m_i \).
Each H^m_l comes from a W^m_l, a polyhedral cube-with-handles such that each component of $W^m_l \cap L_m$ is a 2-cell in the common boundary of W^m_l and of L_m. He finds an $\varepsilon_l/2$-cell, F^m_l, in ∂L_m such that $W^m_l \cap L_m = F^m_l$. (No two of these F^m_l intersect.) Then H^m_l is obtained by adding to W^m_l a cell obtained by thickening F^m_l (in L_m). This pushes ∂L_m into L_m slightly so that $H^m_l \cap L_m = F^m_l$ (or rather the pushed-in F^m_l) and $H^m_l \cap L_m$ is a single 2-cell F^m_l.

With an ε_m-homeomorphism of S^3, we can adjust $G_m(T^1_m \times [0, \varepsilon_m])$ [before the assumption just prior to this section this set would have been written $G_m(T^1_m \times [0, \varepsilon_m])$] in a sufficiently small neighborhood of F^m_l so that $G_m(T^1_m \times \varepsilon_m)$ lies in $L_m - \bigcup_{l=1}^{m-1} F^m_l$. This homeomorphism also adjusts $G_{m-1}(T^1_{m-1} \times [0, \varepsilon_{m-1}])$ so that $G_{m-1}(T^1_{m-1} \times \varepsilon_m) = G_m(T^1_{m-1} \times \varepsilon_m)$ lies in $L_m - \bigcup_l F^m_l$. In constructing this space homeomorphism we just take a homeomorphism of ∂L_m onto itself which is fixed outside a small neighborhood of F^m_l and slips $G_m(T^1_m \times \varepsilon_m)$ off F^m_l and extend to a homeomorphism of S^3 onto itself that is also fixed outside a small neighborhood of F^m_l. These neighborhoods are to be so small that nothing is moved near any other F^m_l and so small that nothing is moved near any other ∂M_m. The foregoing shows that we may assume that $G_m(T^1_m \times \varepsilon_m)$ lies in $L_m - \bigcup F^m_l$ and that $G_m(T^1_m \times \varepsilon_{m+1})$ lies in $L_{m+1} - \bigcup F^m_{m+1}$ and $F^m_l \cap G_{m}(T^1_m \times \varepsilon_{m+1}, \varepsilon_m) = \emptyset$.

If σ^1 is a 1-simplex of T_{m-1}, let us use the notation $\sigma^{1(m-1)}$ to denote the disk $G_{m-1}(\sigma^1 \times [\varepsilon_m, \varepsilon_{m-1}])$ and $T(m-1)$ to denote $G_{m-1}(T^1_{m-1} \times [\varepsilon_m, \varepsilon_{m-1}])$. G_m (as adjusted) imposes a triangulation Q_m on ∂L_m such that $Q_m = \{G_m(\sigma \times \varepsilon_m) : \sigma \in T_{m-1}\}$. Each simplex of Q_m is $(\varepsilon_m + 1/n_m)$-homeomorphic to its corresponding simplex of T_{m-1}. The 1-skeleton of Q^1_m is a sub-polyhedron of ∂L_m. By construction, if $\sigma^2 \in Q^1_m$, then $\sigma^2 \cap G_m(T^1_{m-1} \times [0, \varepsilon_m])$ lies in $G_m(T^1_{m-1} \times \varepsilon_m)$ and in $\partial \sigma^2$. If $\sigma^1 \in T^1_{m-1}$, then, assuming general position, a component of $\sigma^2 \cap \sigma^1(m-1) = \sigma^2 \cap G_{m-1}(\sigma^1 \times [\varepsilon_m, \varepsilon_{m-1}])$ is a simple closed curve in $\text{Int} \sigma^2 \cap \text{Int} \sigma^1(m-1)$ or is possibly an arc lying in the boundary of each of the 2-cells or a point in the boundary of each. This is a consequence of condition (8) of Lemma 3.

By trading disks we can change $\sigma^1(m-1)$ so that $\sigma^1(m-1) \cap \sigma^2$ contains no simple closed curves. Then $\sigma^1(m-1) \cap \sigma^2$ is a common arc of boundary or a common point in the boundary of each. We do not adjust σ^2 for fear of uncovering $h(C)$. Suppose $\sigma_1, \sigma_2, \ldots, \sigma_l$ are the 2-simplexes of Q_m. First we adjust $T(m-1)$ so that it misses $\text{Int} \sigma_1$ as follows: Let J be any simple closed curve in $\text{Int} \sigma_1 \cap T(m-1)$ that bounds a disk D in $\text{Int} \sigma_1$ such that $\text{Int} D$ does not intersect $T(m-1)$. Replace the disk J bounds in $T(m-1)$ by D and push off $\text{Int} \sigma_1$. Proceeding in this manner $T(m-1)$ may be adjusted so that it misses $\text{Int} \sigma_1$. Note that the
adjusted \(T(m-1)\) (also denoted by \(T(m-1)\)) is homeomorphic to the \(T(m-1)\) we started with. We did not introduce any new self intersections. Now we adjust \(T(m-1)\) to miss \(\text{Int } \sigma_2\), then to miss \(\text{Int } \sigma_3\), and so on. Thus \(T(m-1)\) may be adjusted to miss \(L_m - Q_h^i\). Thus, we have that \(T(m-1) \cap L_m = Q_h^i\).

Before we calculate how much \(T(m-1)\) is moved by the process, let us point out one precaution we wish to make in the “pushing off” part of this disk trading procedure. Each \(H_i^n\) intersects \(L_m\) in a disk \(F_i^n\). From the point of view of the \(H_i^n\), the disk trading occurs only near the \(F_i^n\). By pushing \(F_i^n\) off itself in \(H_i^n\) we get a new disk disjoint from \(F_i^n\) having its boundary in \(\text{Bd } H_i^n - F_i^n\). This new disk together with the \(F_i^n\) and an annulus on \(\text{Bd } H_i^n\) bounds a cell \(K_i^n\) in \(H_i^n\). \(K_i^n\) may be thought of as a cylinder \(F_i^n \times [0, 1]\). In pushing off during the above disk trading procedure, we wish not to push anything into \(H_i^n - \text{Int } K_i^n\). When part of the disk to be pushed off lies in \(F_i^n\) and is to be pushed to the \(H_i^n\) side of \(L_m\), we wish to push along the lines perpendicular to \(F_i^n\) in the representation of \(K_i^n\) as \(F_i^n \times [0, 1]\). Thus, any new disks resulting from such disk trading will intersect \(H_i^n\) as shown in Figure 4. This will be convenient later.

Now to show that the disk trading does not enlarge \(G_m(T_m \times [\zeta_m + 1, \zeta_m]) = T(m)\) too much. Each \(T(m)\) has already had an \(\epsilon_m\)-adjustment to move it off the \(F_i^n\). Recall that \(\rho(h(x), G_m(x, t)) < 1/\eta_m\) for all \(x \in C\) and \(t \in [-\zeta_m, \zeta_m]\) and that \(H_m = G_m\) on \(\text{Bd } C \times [-\zeta_m, \zeta_m]\). This latter condition says \(G_m(\text{Bd } C \times \zeta_m) = L_m\). All this was

![Figure 4](https://www.ams.org/journal-terms-of-use)
true before the alteration of G_m to push $G_m(T^1 \times \xi_m)$ off F^m_1. Now G_m is an $(\epsilon_m + 1/n_m)$-homeomorphism of $\{ \bigcup T^1 \times [0, \xi_m] \} \cup \{ \bigcup_{n_m} \Bd C \times \xi_m \}$ instead of a $1/n_m$-homeomorphism. Since $\sigma^2 \in Q^2_m$ is $(\epsilon_m + 1/n_m)$-homeomorphic to some $\sigma \in T^2_{m-1}$, then mesh Q_m is less than

$$\frac{1}{(m-1)} + 2\epsilon_m + 2/n_m.$$

Since $1/n_m < \delta_m/3$ and $\delta_m < \epsilon_m/2$ (see McMillan's Theorem 1 and the beginning of this construction) and $\epsilon_m < 1/m < 1/(m-1)$, then mesh $Q_m < 4/(m-1)$. Thus no point of $T(m-1)$ gets moved by more than $4/(m-1)$ in the disk trading procedure.

Naming the cubes-with-holes. Now let us do some naming. $T(m-1)$ separates the set $M_{m-1} - \Int L_m$ into little 3-manifolds with connected boundary. See Figure 5. We want to name these manifolds and their sides. Each 3-manifold with boundary is a cube-with-handles with a “top” (which is a disk-with-handles), 3 “sides” (disks) and a “bottom” (disk).

- $\alpha_{m-1} \subset \Bd M_{m-1}$. Let $\sigma \in T^2_{m-1}$. σ corresponds to some set $\sigma_{m-1} \subset L_{m-1}$ under G_{m-1}, namely $G_{m-1}(\sigma \times \xi_{m-1})$. It does not correspond to an element of Q_{m-1}, for each such element is the image of elements of T^2_{m-2} under G_{m-1}. However, each element of Q_{m-1} is a union of such σ_{m-1}'s. Let $\alpha_{o,m}$ be the disk-with-handles obtained by replacing those F_i^{-1} in σ_{m-1} with $\Bd F_i^{-1}$. Let $\alpha_{o,m} \subset \Bd L_m$. Let $\sigma \in T^2_{m-1}$. Under G_m there corresponds some $\sigma_m \in Q^2_m$, namely $G_m(\sigma \times \xi_m)$. Let $\beta_{o,m}$ be this σ_m.

- $\alpha_{o,m} \subset \Bd F_i^{-1}$. Let $\sigma_i \in T^1_{m-1}$, let $\Bd \sigma_i$ be $\sigma_i \cup \sigma_2 \cup \sigma_3$, where $\sigma_i \in T^1_{m-1}$, $i = 1, 2, 3$. Define $\gamma_{o,m} = \sigma_{m-1}$. Each of the $\beta_{o,m}$ and $\gamma_{o,m}$ ($i = 1, 2, 3$) is a disk. If any two among $\alpha_{o,m}, \beta_{o,m}$ and $\gamma_{o,m}$ intersect, it is along an arc of boundary. Recall that

$$T(m-1) = \bigcup \{ \gamma_{o,m} : \sigma^1 \in T^1_{m-1} \} = G_{m-1}(T^1_{m-1} \times [\xi_m, \xi_{m-1}]).$$

Then $\alpha_{o,m} \cup \beta_{o,m} \cup \gamma_{o,m} \cup \gamma_{o,m} \cup \gamma_{o,m}$ is a 2-manifold separating S^3. Denote

Vertical pieces are part of

$$\text{Front face is } \gamma_{o,m}$$

Figure 5
by $\Gamma_{\sigma,m}$ the closure of that component of S^3 minus this 2-manifold in $\text{Int} \ M_{m-1}$ (see Figure 6). Then $M_{m-1} - \text{Int} \ L_m = \bigcup \{\Gamma_{\sigma,m} : \sigma \in T_m^{m-1}\}$. See Figure 5. For if $p \in \text{Int} (M_{m-1} - \text{Int} \ L_m)$ take an arc pq from p to $\text{Bd} \ M_{m-1} \cup \text{Bd} \ L_m$ such that $\text{Int} (pq) \subseteq \text{Int} (M_{m-1} - \text{Int} \ L_m)$ and $pq \cap T(m-1) = \emptyset$. Then $q \in \alpha_{\sigma,m}$ or $\beta_{\sigma,m}$ for some $\sigma \in T_m^{m-1}$. Since $pq-q$ misses $\text{Bd} \ \Gamma_{\sigma,m}$, and points near q on the other side of $\text{Bd} \ \Gamma_{\sigma,m}$ can be joined by an arc to $S^3 - M_{m-1}$ missing $\text{Bd} \ \Gamma_{\sigma,m}$, then $p \in \Gamma_{\sigma,m}$. Hence, $M_{m-1} - \text{Int} \ L_m \subseteq \bigcup \{\Gamma_{\sigma,m} : \sigma \in T_m^{m-1}\}$. The other inclusion is obvious.

We must now alter the γ so that we can replace $\beta_{\tau,m}$ with the union of the appropriate $\alpha_{\tau,m+1}$'s—that is, replace disks on $\beta_{\sigma,m}$ with $\text{Bd} \ H_i^{m-1} - \text{Int} \ F_i^{m-1}$'s in the manner we did to make the $\alpha_{\sigma,m}$. To do this we adjust the γ to miss the H_i^n. We cannot do this, however, while the γ remain disks, so we add handles to the γ.

Simplifying intersections with H_i^n. Before we can adjust $T(m-1)$ so that no H_i^n can intersect it, we must be sure that no handle of H_i^n loops a "fence post" $G_{m-1}(v \times [\xi_m, \zeta_m])$, where v is a vertex of T_{m-1}. In Figure 7, H_i^n is shown as a torus growing out of Bd L_m. Bd L_m is shown jutting up through two "walls" in $T(m-1)$. The walls are shown as they were adjusted to remove $T(m-1)$ from Bd L_m.

Let N_i^n be a regular neighborhood in $\text{Cl} (S^3 - L_m)$ of H_i^n. We want the N_i^n to be mutually disjoint, each N_i^n to be an e_m-set, and $E^n_i = N_i^n \cap L_m$ to be a disk. We want each E^n_i, and hence each N_i^n, to miss $G_m(T_m^n \times [0, \xi_m])$. This can be done, because the F_i^n have this property. In particular, we want each E^n_i to miss the 1-skeleton of Q_m. We also want $N_i^n \subseteq \text{Int} \ M_{m-1}$.

We want to look at each H_i^n as a fattened up wedge of simple closed curves $J_{r_i,m}$, $r_i=1,2,\ldots,R_{i,m}$, with $J_{r_i,m}$ in general position with respect to $\bigcup \gamma_{\sigma,m}$, with the wedge point $x_{i,m}$ in $\text{Int} F_i^n$, and with $J_{r_i,m} - x_{i,m} \subseteq \text{Int} H_i^n$. Furthermore, we
want to choose the γ_i^m so that they intersect the disks $\gamma \cap K_i^m$ exactly twice (see Figure 4). Define a pseudo-isotopy $f_i^m: \mathbb{N}_i^m \times I \to \mathbb{N}_i^m$ such that

1. $f_i^m(x, 0) = x$, for all $x \in \mathbb{N}_i^m$,
2. $f_i^m(x, t) = x$, for all $x \in \gamma_i^m$, $r=1, 2, \ldots, R_i,m$, and for all $x \in \partial \mathbb{N}_i^m$,
3. $f_i^m((\mathbb{N}_i^m - (H_i^m - F_i^m)) \times t$ is a homeomorphism for all $t \in [0, 1]$,
4. $f_i^m(H_i^m, 1) = \bigcup \{J_i^m : r=1, 2, \ldots, R_i,m\} \cup F_i^m$,
5. $f_i^m(N_i^m, t) = N_i^m$ for all $t \in [0, 1]$.

The plan is to adjust the γ_s,m's to miss $\bigcup J_i^m$ and use f_i^m to push them off all of H_i^m. By choosing a stage t of f_i^m close enough to the end stage that $f_i^m(H_i^m, t)$ lies so close to $((\bigcup J_i^m) \cup F_i^m$ that it misses all the γ_s,m's, too, we can use

$$(f_i^m \mid \mathbb{N}_i^m \times t)^{-1}$$

to push all the γ_s,m's off H_i^m.

First, we make a few definitions. Consider each J_i^m and each γ_s,m as being oriented. Let J be any J_i^m and γ any γ_s,m. Let $p(J)$ be the number of positive crossings of J through γ and let $n(J)$ be the number of negative crossings of J through γ. Define the piercing number of J with respect to γ to be

$$p \# J = p(J) - n(J)$$

and the intersection number of J with respect to γ to be

$$I(J) = p(J) + n(J).$$

We will refer to an arc of boundary of a γ_s,m spanning from ∂L_{m-1} to ∂L_m as a post. We will refer to γ_s,m as a fin from each of its posts. We will assume that each J_i^m is in general position with respect to $T(m-1)$ so that $J \cap T(m-1)$ is finite, misses all the posts of $T(m-1)$, and crosses at each point of intersection.
Let us look back to $T(m-1)$, which is the union of the $\gamma_{e,m}$'s. We made two adjustments to $T(m-1)$ to get the $\gamma_{o,m}$'s. Before the adjustments, each H^n_m was an e_m-set so that, by our choice of e_m at the very beginning of this proof, $H^n_m \cap T(m-1)$ lay in the union of the fins radiating from some post P. Thus $p \# J^{l,m}_m = 0$ with respect to all γ' not radiating from this post P, because $I(J^{l,m}_m) = 0$ with respect to such γ'. The first adjustment (moving $G_{m-1}(T_{m-1}m_1 \times [0, \zeta_{m-1}])$ off the F^n_m and F^{n-1}_m) does not change this. The next adjustment, the disk trading, did. It caused new γ' to hit H^n_m in K^n_m. But $p \# J$ with respect to γ'' is the linking number of J and $\partial \gamma''$. Since $\partial \gamma''$ and J were not moved in the disk trading procedure, $p \# J$ with respect to any γ'' which is not a fin of P remained 0. Hence neither adjustment made $p \# J$ with respect to those γ which are not fins from P nonzero.

If P is a post in $T(m-1)$, γ and γ' are fins from P, and $(H^n_m - K^n_m) \cap T(m-1)$ lies in the union of the fins from P, then, for any $J^{l,m}_m$ in H^n_m, $p \# J^{l,m}_m = 0$ with respect to γ implies $p \# J^{l,m}_m = 0$ with respect to γ'. For consider the set

$$X = \bigcup \{ \Gamma_{e,m} : P \subset \Gamma_{e,m} \} \cup K^n_m.$$

Then $\gamma \cup \gamma'$ separates X, K^n_m lies in one component, and $J^{l,m}_m \subset X$. Since $J^{l,m}_m$ is a simple closed curve, it crosses $\gamma \cup \gamma'$ as many times in one direction as another. Since $p \# J^{l,m}_m = 0$ with respect to γ, it crosses γ as many times in one direction as another. Thus it must cross γ' as many times in one direction as another. Hence $p \# J^{l,m}_m = 0$ with respect to γ'. This shows, in fact, that any simple closed curve in

$$\bigcup \{ \Gamma_{e,m} : P \subset \Gamma_{e,m} \}$$

links $\partial \gamma$ iff it links $\partial \gamma'$.

We want $p \# J = 0$ with respect to all γ making up $T(m-1)$. To accomplish this we must adjust $T(m-1)$. For each post P we choose a fin γ such that $\partial \gamma \subset \partial \gamma'$, and for each J such that $p \# J \neq 0$ with respect to γ and $J \subset H^n_m$ such that $(H^n_m - K^n_m) \cap T(m-1)$ lies in those fins radiating from P, we will make $I(J) = 0$ with respect to γ by an adjustment of $T(m-1)$. The manner in which we do this says that $p \# J = 0$ with respect to all γ radiating from P and hence for all γ making up $T(m-1)$.

We take a collection of disjoint polygonal arcs from P minus its endpoints to points of $J \cap \gamma$ such that each arc misses J' for all $J' \neq J$, each arc intersects J at only one point, and each arc lies, except for its endpoint on P, in $\text{Int} \gamma$.

Choose a disjoint collection of neighborhoods N_1, N_2, \ldots, N_k of the arcs joining P to $J \cap \gamma$. We choose the N_i so that none contains but one such arc, none contains a point of J' for any $J' \neq J$, none gets outside of $\text{Int} (M_{m-1} - L_m)$, none intersects any post other than P, none intersects any $\gamma_{e,m}$ not radiating from P, none gets outside $\text{Int} (\bigcup \{ \Gamma_{e,m} : P \subset \Gamma_{e,m} \})$ and none gets outside the e_m-neighborhood of the arc it contains. With a homeomorphism of S^3, fixed outside $\bigcup_{i=1}^k N_i$, and taking $\gamma \cup \gamma'$ onto $\gamma \cup \gamma'$ (here γ' is any other fin from P), we move P so that all the arcs lie in γ'. We also want the new γ' to contain all the old γ'. This homeomorphism adjusts $T(m-1)$ so that $I(J) = 0$ with respect to γ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We do the above process to all the J of the type under consideration intersecting that particular γ so that no such J has nonzero piercing number with respect to any fin from P. We do this for every post P. After doing this, no J will loop any post P. In other words, $p \# J = 0$ with respect to any γ making up $T(m-1)$ and for all $J^{i, m}$ for all H^m_i.

We are now in a position to alter the γ so that they miss the $J^{i, m}$. We choose such a J and show how it is done. Let x_0 be the point at which J is attached to L_m. Suppose for the time being that $J \subset H^m_i$ and $K^{i, m}_i$ misses all the walls γ. Proceed along J to the first point of intersection with a γ, say γ_0. Now proceed to the first point q_0 at which J pierces this γ_0 in the opposite direction and back up to the last point p_0 at which J pierced γ_0 in the original direction. We would like for the arc p_0q_0 to be disjoint from all the γ's except for its endpoints p_0 and q_0. If not we connect q_0 to p_0 by an arc A_0 lying in γ_0 and push the resultant simple closed curve J_0 off γ_0. $J_0 \cap \gamma_0 = \emptyset$ so that J_0 does not link $Bd \gamma_0$ and hence does not link $Bd \gamma$ for any γ radiating from P. Hence there are points p_1, q_1 of p_0q_0 lying in some fin γ_1 such that $p_1q_1 \cap \gamma_1 = \{p_1, q_1\}$. Continuing in this way we can find two points p_n, q_n such that p_nq_n is a subarc of J, p_n and q_n lie on some wall γ_n, J pierces this wall γ_n in different directions at p_n and q_n, and $Int (p_nq_n)$ misses all the γ.

Take a small regular neighborhood R of p_nq_n in the $\Gamma_{s, m}$ containing p_nq_n, remove it from that $\Gamma_{s, m}$ and attach it to the $\Gamma_{s, m}$ which J_n leaves at p_n and enters at q_n. Replace the two disks of $R \cap \gamma_n$ with $Bd R$ minus the interiors of those disks to get a new γ_n (the new γ_n now has an oriented handle). The number of points at which J hits the γ is now reduced by two.

We must, of course, take R sufficiently close to p_nq_n so it misses all of $J - p_nq_n$ as well as all the other $J^{i, m}$ and lies inside the H^m_i containing J. Note that the size of a γ after a finite number of changes of this sort is not increased as much as $2e_m$.

Now consider the case in which $J \subset H^m_i$ and $K^{i, m}_i$ intersects some wall γ. Then $H^m_i \cap \gamma = K^{i, m}_i \cap \gamma$ is a collection of mutually disjoint disks in $K^{i, m}_i$, each of which J intersects once in each direction. Since the component disks are linearly ordered from X_0, they may now be treated in a manner similar to the above.

Repeating this process a finite number of times, adjusts the walls γ so that no $J^{i, m}$ hits any of them. Thus a wedge of simple closed curves $J^{i, m}_r$, $r = 1, 2, \ldots, R_{i, m}$, lies in the interior of the $\Gamma_{s, m}$ containing $x_{i, m}$ (except that $x_{i, m}$ lies on $Bd \Gamma_{s, m}$).

By choosing a number $\xi_{i, m} > 0$ close enough to 1 we have that

$$f^m_i (H^m_i, \xi_{i, m}) \subset \Gamma_{s, m}$$

and lies so close to $\bigcup J^{i, m}_r$ that it misses all the walls $\gamma_{s, m}$ of $\Gamma_{s, m}$. Then

$$(f^m_i \mid N^m_i \times \xi_{i, m})^{-1}$$

pushes all the walls off of H^m_i, is fixed outside N^m_i, and moves no point more than diameter $N^m_i \leq e_m$. Piecing together all these $$(f^m_i \mid N^m_i \times \xi_{i, m})^{-1}$$'s we move all the walls γ off all the H^m_i by a space homeomorphism fixed outside $\bigcup_{i=1}^{n} N^m_i$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Naming new $\Gamma_{\sigma,m}$. At present, a $\Gamma_{\sigma,m}$ is a cube-with-holes with $\partial \Gamma_{\sigma,m} = \alpha_{\sigma,m} \cup \beta_{\sigma,m} \cup \gamma_{\sigma_1,m} \cup \gamma_{\sigma_2,m} \cup \gamma_{\sigma_3,m}$, where the $\gamma_{\sigma_i,m}$ are disks-with-handles as obtained in the previous section. The $\beta_{\sigma,m}$ is a disk lying in ∂L_m. We want to change $\beta_{\sigma,m}$ to a disk-with-handles by replacing each F^m lying in $\beta_{\sigma,m}$ with $\partial F^m_{\sigma,m} = \Gamma_{\sigma,m} \cup \alpha_{\sigma,m} \cup \gamma_{\sigma_1,m} \cup \gamma_{\sigma_2,m} \cup \gamma_{\sigma_3,m}$ where the $\gamma_{\sigma_i,m}$ is the new $\gamma_{\sigma_i,m}$. Now we have that $\cup_{\sigma \in T^2_{m-1}} \Gamma_{\sigma,m} = M_{m-1} - \text{Int } M_m$ rather than $M_{m-1} - \text{Int } L_m$ as before. Thus $\cup \{\Gamma_{\sigma,m} : \sigma \in T^2_{m-1}, m = 2, 3, \ldots\} = M_1 - h(C)$. Define Γ_1 to be the closure of $S^3 - M^1$. Then

$$\Gamma_1 \cup (\cup \Gamma_{\sigma,m}) = S^3 - h(C).$$

We wish now to calculate diameter $\Gamma_{\sigma,m}$ for $m > 1$. Clearly, diameter $\Gamma_{\sigma,m}$ equals diameter $\partial \Gamma_{\sigma,m}$. Recall

$$\partial \Gamma_{\sigma,m} = \alpha_{\sigma,m} \cup \beta_{\sigma,m} \cup \gamma_{\sigma_1,m} \cup \gamma_{\sigma_2,m} \cup \gamma_{\sigma_3,m},$$

where $\sigma \in T^2_{m-1}$ and $\sigma_1, \sigma_2, \sigma_3$ are the 1-faces of σ.

(i) diameter $\alpha_{\sigma,m} < 4/(m-1)$.

diameter $\alpha_{\sigma,m} < \text{mesh } T_{m-1} + \text{diameter } G_m + \text{diameter } H^m_i$

+ adjustment to move Q_{m-1} off of F^m_{i-1}

< $1/(m-1) + 2/n_{m-1} + e_m + 2e_{m-1} < 6/(m-1)$.

We call the reader's attention to the notation change from $G_{n,m}$ to G_m and ξ_{m} to ξ_m following the construction of M_m.

(ii) diameter $\beta_{\sigma,m} < 4/(m-1)$. We have here

diameter $\beta_{\sigma,m} < \text{mesh } Q_m + 2e_m < \text{mesh } Q_m + 2/(m-1) < 6/(m-1)$.

The mesh Q_m is calculated prior to the first naming of the $\Gamma_{\sigma,m}$.

(iii) diameter $\gamma_{\sigma_i,m} < 16/(m-1)$. We have diameter $\alpha_i < 1/(m-1)$, which is the mesh T_{n-1}; each point of the original $\gamma_{\sigma_i,m}$ is within $1/n_{m-1}$ of a point of α_i. We moved $\gamma_{\sigma_i,m}$ by e_m and e_{m-1}, respectively, to get it off of F^m_i and F^m_{i-1}, by $4/(m-1)$ in the disk trading and by e_m in pushing them off of the H^m_i. Thus

diameter $\gamma_{\sigma_i,m} < 1/(m-1) + 2/n_{m-1} + e_m + 2e_{m-1} + 8/(m-1) + 2e_m$

< $1/(m-1) + 1/(m-1) + 2/(m-1) + 2/(m-1) + 8/(m-1) + 2e_m$

< $16/(m-1)$.

Putting all these parts together, we have that

$$\text{diameter } \partial \Gamma_{\sigma,m} < 6/(m-1) + 6/(m-1) + 3(16/(m-1)) = 60/(m-1).$$

We see then that diameter $\Gamma_{\sigma,m} < 60/(m-1)$ and, thus, diameter $\Gamma_{\sigma,m} \to 0$ as $m \to \infty$.

4. Repairing embeddings. The following lemma will be useful in proving Theorem 1:
Lemma 4. Let N be a connected closed 2-manifold and let K_1, K_2, \ldots, K_n be a finite collection of disjoint connected 1-complexes in N. Suppose there is a map h taking N onto a 2-sphere S whose nondegenerate point inverses are the K_i. Then there is an extension f of h taking $N \times [0, 1]$ onto $S \times [0, 1]$ such that

(a) $f(x, 0) = h(x)$ for all $x \in N$,
(b) $f^{-1}(S \times t) = N \times t$,
(c) $f|N \times 1$ has just one nondegenerate point inverse, K, and K is a connected 1-complex,
(d) each nondegenerate point inverse of f is a connected 1-complex,
(e) the image of the nondegenerate point inverses under f is n arcs, disjoint except a common endpoint $f(K)$.

Proof. Since each K_i goes to a point in S under h, the K_i do not separate N. Thus there is a collection of disjoint polygonal arcs $A_1, A_2, \ldots, A_{n-1}$ in N such that A_i joins K_i to K_{i+1} and $\text{Int } A_i$ lies in $N - \bigcup_{i=1}^{n-1} K_i$. Set $K^0 = (\bigcup K_i) \cup (\bigcup A_i)$. Then $h(K)$ is a wedge of $n-1$ arcs in S emanating from $h(K_1)$. Define a pseudo-isotopy $H: S \times [0, 1] \to S$ that shrinks $h(K)$ to a point in S. Then

$$f: N \times [0, 1] \to S \times [0, 1]$$

is the required mapping.

The following result is our main theorem. It says that the embedding of a 3-cell in S^9 can be repaired.

Theorem 1. Let C be a (wild) 3-cell in S^3 and let $h: C \to S^3$ be an embedding of C such that $h(C)$ is tame. Then h can be extended to a monotone map f of S^3 onto itself such that $f(S^3 - C) = S^3 - f(C)$. Furthermore, each nondegenerate point inverse can be taken to be a finite 1-complex.

Proof. We may suppose that $h(C)$ is the round unit ball in S^3. Now consider a sequence of triangulations T_i of $\text{Bd } C$ as given in §3. Then $h(T_i)$ is a sequence of triangulations of $h(\text{Bd } C)$. Let H carry $\text{Bd } C \times [0, \frac{1}{2}]$ homeomorphically into $S^3 - \text{Int } h(C)$ such that, for all $x \in \text{Bd } C$, $H(x, 0) = h(x)$, $H(\text{Bd } C \times (0, \frac{1}{2})) \cap h(C) = \emptyset$, and $H(\text{Bd } C \times t)$ is a round sphere concentric with $h(\text{Bd } C)$. Let $C_{\sigma, m}$ be the 3-cell $H(\sigma \times [\frac{1}{2}m+1, \frac{1}{2}m])$ for each $\sigma \in T^3_m, m \geq 1$. Let C_1 be the closure of that component of $S^3 - H(\text{Bd } C \times \frac{1}{2})$ not containing $h(C)$. We want to map $\Gamma_{\sigma, m}$ (from §3) onto $C_{\sigma, m}$ in such a way as to extend h. First, we define the map on $\text{Bd } \Gamma_{\sigma, m}$. Recall from §3 that

$$\text{Bd } \Gamma_{\sigma, m} = \alpha_{\sigma, m} \cup \beta_{\sigma, m} \cup \gamma_{\sigma_1, m} \cup \gamma_{\sigma_2, m} \cup \gamma_{\sigma_3, m}.$$ Each of $\alpha_{\sigma, m}$ and $\gamma_{\sigma, m}$ is a disk-with-handles, so there is a 1-complex on each missing its boundary such that modding out this 1-complex gives a decomposition
space homeomorphic to a disk. Call these 1-complexes $K(\alpha_{m}, m)$ and $K(\gamma_{m}, m)$ ($i=1, 2, 3$), respectively.

Since $\bigcup \{Bd \alpha_{m} : \sigma \in T_{m-1}^{2}\}$ is a copy of T_{m-1}^{2}, there is a natural homeomorphism from this set onto $H(T_{m-1}^{2} \times 1/2^{m})$. This homeomorphism can be extended to a monotone mapping of $\bigcup \{\alpha_{m} : \sigma \in T_{m-1}^{2}\}$ onto $H(Bd C \times 1/2^{m})$ collapsing only the $K(\alpha_{m}, m)$ to a point. Piecing together these maps we have an extension of h to $C \cup (\bigcup \{\alpha_{m} : \sigma \in T_{m-1}^{2}, m=2, 3, 4, \ldots\})$. This map is clearly continuous at $Bd C$ by construction of the α_{m}'s. Now we have h defined on two disjoint arcs of boundary of each γ_{m}. Extend to all the γ_{m} in such a manner that only the $K(\gamma_{m}, m)$ get collapsed to a point and so that γ_{m} gets taken onto $H(\sigma_{i} \times [1/2^{m+1}, 1/2^{m}])$. Thus h is extended to $\bigcup \{Bd \Gamma_{m} : \sigma \in T_{m-1}^{2}, m=2, 3, 4, \ldots\} \cup C$, because β_{m} is the union of α_{m+1}'s.

Now we extend the map to collars in each Γ_{m} of the boundary of Γ_{m} by using Lemma 4. On the inside of these collars the map collapses a connected 1-complex to a point and there is only one nondegenerate point inverse on the inside of the collar of a Γ_{m}. By Theorem 6.2 of [4], the map can be extended to the rest of Γ_{m} onto Γ_{m} in such a manner that each point inverse is a connected 1-complex.

The extension to Γ_{1} onto C_{1} is done in the same manner. The extended map is the required mapping f.

Remark. In Theorem 1, if C is locally tame at each point of an open set U of $Bd C$, then f can be taken to be a homeomorphism on some neighborhood in S^{3} of U. Just push $Bd C$ into $S^{3} - C$ at all points of U and apply the technique of Theorem 1 to the new 3-cell C' so formed.

A crumpled cube C is a space homeomorphic to the union of a 2-sphere and its interior in E^{3}. If C is a crumpled cube, $Int C$ means the set of all points having a neighborhood homeomorphic to E^{3} and $Bd C$ means $C - Int C$. Thus $Bd C$ is a 2-sphere and $Int C$ is homeomorphic to the interior of $Bd C$ under some embedding in E^{3}. If C_{1} and C_{2} are crumpled cubes and h is a homeomorphism of $Bd C_{1}$ onto $Bd C_{2}$, then $C=C_{1} \cup_{h} C_{2}$ is the space $C_{1} \cup C_{2}$ with $x \in Bd C_{1}$ identified with $h(x) \in Bd C_{2}$. C_{1} and C_{2} are said to be sewn along their boundary by h and C is called the sum of C_{1} and C_{2}. The following theorem is an immediate corollary to Theorem 2 and a result due to Hosay [11] and to Lininger [14], which says that any crumpled cube may be sewed to a 3-cell in such a way that the sewing gives S^{3}. (For a relatively easy proof of this theorem, the reader is referred to [7].)

Corollary 1. If C is a crumpled cube and K is a 3-cell, then any homeomorphism of $Bd C$ onto $Bd K$ can be extended to a monotone mapping f of C onto K such that $f(Int C)=Int K$ and $f(Bd C)=Bd K$.

Proof. Sew C, K to 3-cells C', K', respectively, to get two copies of S^{3}. Then use Theorem 1 to get a map of S^{3} onto itself taking C' to K' extending the given homeomorphism. The restriction of this map to C is the required extension.

Corollary 2 says any embedding of a 2-sphere in S^{3} can be repaired:
Corollary 2. If S_1 and S_2 are 2-spheres in S^3, S_2 tame, and h is a homeomorphism of S_1 onto S_2, then h can be extended to a monotone mapping f of S^3 onto itself such that $f(S^3 - S_1) = S^3 - S_2$.

Proof. Consider S^3 as the sewing of two crumpled cubes, C_1 and C_2, along S_1 and also as a sewing of two 3-cells, K_1 and K_2, along S_2, and use Corollary 1.

Professors Daverman and Eaton have pointed out that the following theorem, which says that the embedding of any disk in S^3 can be repaired, is easily proved using a result of theirs and Theorem 1:

Corollary 3. If D_1 and D_2 are disks in S^3, D_2 is tame, and h is a homeomorphism of D_1 onto D_2, then there is an extension of h to a monotone mapping f of S^3 onto itself such that $f(S^3 - D_1) = S^3 - D_2$.

Proof. We may suppose that D_2 is the disk $\{(x, y, 0) : x^2 + y^2 \leq 1\}$. Let C be the cell $\{(x, y, z) : x^2 + y^2 + z^2 \leq 1\}$. In Theorem 7 of [8], Daverman and Eaton have shown that there is a 3-cell K in S^3 and a monotone mapping g of S^3 onto itself such that $g(K) = D_1$, $g|S^3 - K$ is a homeomorphism of $S^3 - K$ onto $S^3 - D_1$, and the following diagram commutes for some homeomorphism h:

\[
\begin{array}{ccc}
K & \xrightarrow{h_1} & C \\
\downarrow{g|K} & & \downarrow{g_1} \\
D_1 & \xrightarrow{h} & D_2
\end{array}
\]

where $g_1 : C \to D_2$ is given by $g_1(x, y, z) = (x, y, 0)$. By Theorem 1, h_1 can be extended to a monotone mapping h_2 of S^3 onto itself such that $h_2(S^3 - K) = S^3 - C$. Clearly, g_1 can be extended to a mapping g_2 of S^3 onto itself such that $g_2|S^3 - C$ is a homeomorphism of $S^3 - C$ onto $S^3 - D_2$. Set $f = g_2 \circ h_2 \circ g_1^{-1}$. Then f is the required monotone mapping.

In general, it is not known whether an embedding of an arc or a simple closed curve in S^3 can be repaired. However, Theorem 3 of the previously mentioned paper of Daverman and Eaton says that, if C is a 3-cell in S^3, there is a map f of S^3 onto itself such that $f(C)$ is an arc and $f|S^3 - C$ is a homeomorphism of $S^3 - C$ onto $S^3 - f(C)$. Since this can be done for wild 3-cells C in such a manner that $f(C)$ is also wild, then it follows that certain wild arcs in S^3, namely those obtained by squeezing a 3-cell in S^3, can be repaired. However, a converse of this result does not exist so that the following question is still open: Can an embedding of an arc (simple closed curve) in S^3 be repaired?

The above theorems completely repair an embedding. But are questions such as the following also true? If S is a wild sphere in S^3 and U an open subset of S, is there a monotone map $f : S^3 \to S^3$ such that $f|S$ is a homeomorphism, $f(S)$ is made locally tame only at each point of $f(U)$, and $f(S^3 - S) = S^3 - f(S)$? And if
so, does such a map change the wildness of points on S that are well away from U?
The proof of Theorem 1 required the extension of the map to Γ_1, the closure of the
complement in S^3 of a cube-with-handles. For surfaces in 3-manifolds or for spheres-
with-handles in S^3, we do not give the theorem analogous to Theorem 1 because
of the difficulty of extending a map of ∂S_1 into a 3-manifold other than a cell.
See Lambert [13] and Jaco and McMillan [12].

These results enable us to extend monotone upper semicontinuous decompositions
of the following variety. Let S be a wild 2-sphere in S^3. Let G_1 be an upper semi-
continuous decomposition of S into continua not separating S. By a well known
theorem of R. L. Moore [16], S/G_1 is homeomorphic to S. By Corollary 2, there is
a monotone decomposition G_2 of S^3 whose nondegenerate elements are disjoint
from S, $S^3/G_2 = S^3$, and S goes to a tame 2-sphere in S^3. If G is the decomposition
whose nondegenerate elements are those of G_1 together with those of G_2, then,
by [9, Theorem 8], and the preceding statement, $S^3/G = S^3$ and S goes to a tame
2-sphere in S^3/G. For an example of a decomposition in S^3 that cannot be ex-
tended to a decomposition of S^3 giving back S^3, the reader is referred to §8 of [4].
For a theorem analogous to Corollary 2, in the sense that it shows how to unknot
simple closed curves in E^3 see Theorem 5 of [10].

REFERENCES

 373–385. MR 39 #4820.
 MR 26 #4331.
3. ———, Each disk in E^3 is pierced by a tame arc, Amer. J. Math. 84 (1962), 591–599.
 MR 26 #4332.
4. ———, Extending monotone decompositions of 3-manifolds, Trans. Amer. Math. Soc. 149
 MR 28 #3408.
8. R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of cells in a 3-manifi-
 103–118. MR 19, 1187.
10. John Hempel, A surface in S^3 is tame if it can be deformed into each complementary
11. N. Hosay, The sum of a real cube and a crumpled cube is S^3, Notices Amer. Math. Soc.
 10 (1963), 666; errata, ibid. 11 (1964), 152. Abstract #607-17.
12. William Jaco and D. R. McMillan, Jr., Retracting three-manifolds onto finite graphs,

Western Michigan University, Kalamazoo, Michigan 49001