Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Monofunctors as reflectors


Author: Claus Michael Ringel
Journal: Trans. Amer. Math. Soc. 161 (1971), 293-306
MSC: Primary 18A40
DOI: https://doi.org/10.1090/S0002-9947-1971-0292907-X
MathSciNet review: 0292907
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a well-powered and co-well-powered complete category $ \mathcal{K}$ with weak amalgamations, the class M of all reflective subcategories with a monofunctor as reflector forms a complete lattice; the limit-closure of the union of any class of elements of M belongs to M. If $ \mathcal{K}$ has injective envelopes, then the set-theoretical intersection of any class of elements of M belongs to M.


References [Enhancements On Off] (What's this?)

  • [1] S. Baron, Reflectors as compositions of epi-reflectors, Trans. Amer. Math. Soc. 136 (1969), 499-508. MR 38 #4535. MR 0236237 (38:4535)
  • [2] S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235. MR 33 #162. MR 0191935 (33:162)
  • [3] Ph. Dwinger, The amalgamation problem from a categorical point of view, Proc. Conference on Universal Algebra, Queen's Paper 25, Kingston, Ont., 1970. MR 0260644 (41:5268)
  • [4] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. MR 38 #1144. MR 0232821 (38:1144)
  • [5] H. Herrlich, Topologische Reflexionen und Coreflexionen, Lecture Notes in Math., no. 78, Springer-Verlag, Berlin and New York, 1968. MR 41 #988. MR 0256332 (41:988)
  • [6] -, An example in category theory, Math. Z. 113 (1970), 309-312. MR 0260823 (41:5444)
  • [7] G. M. Kelly, Monomorphisms, epimorphisms, and pull-backs, J. Austral. Math. Soc. 9 (1969), 124-142. MR 39 #1515. MR 0240161 (39:1515)
  • [8] J. F. Kennison, Full reflective subcategories and generalized covering spaces, Illinois J. Math. 12 (1968), 353-365. MR 37 #2832. MR 0227247 (37:2832)
  • [9] J. Lambek, Torsion theories, additive semantics, and rings of quotients, McGill University, Montreal, 1970. MR 0284459 (44:1685)
  • [10] B. Mitchell, Theory of categories, Pure and Appl. Math., vol. 17, Academic Press, New York, 1965. MR 34 #2647. MR 0202787 (34:2647)
  • [11] G. Preuss, Eine Charakterisierung epireflektiver Unterkategorien einer Kategorie mit Inversionseigenshaft, Manuscripta Math. 1 (1969), 307-316. MR 41 #1831. MR 0257177 (41:1831)
  • [12] C. M. Ringel, Diagonalisierungspaare. II, Math. Z. 122 (1971), 10-32. MR 0291247 (45:341)
  • [13] R. G. Swan, Algebraic K-theory, Lecture Notes in Math., no. 76, Springer-Verlag, Berlin and New York, 1968. MR 39 #6940. MR 0245634 (39:6940)
  • [14] J. L. Verdier, Séminaire géométrie algébrique 1963/64, Inst. Hautes Études Sci., Paris, 1964. MR 34 #7520.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 18A40

Retrieve articles in all journals with MSC: 18A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0292907-X
Keywords: Category with amalgamations, lattice of reflective subcategories, limit-closure of the injectives, injective envelope, locally minimal subcategories, locally maximal subcategories, torsion theories in a module category, Grothendieck topologies
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society