Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Bonded projections, duality, and multipliers in spaces of analytic functions


Authors: A. L. Shields and D. L. Williams
Journal: Trans. Amer. Math. Soc. 162 (1971), 287-302
MSC: Primary 46.30; Secondary 30.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0283559-3
MathSciNet review: 0283559
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \varphi $ and $ \psi $ be positive continuous functions on $ [0,1)$ with $ \varphi (r) \to 0$ as $ r \to 1$ and $ \smallint _0^1\psi (r)\;dr < \infty $. Denote by $ {A_0}(\varphi )$ and $ {A_\infty }(\varphi )$ the Banach spaces of functions f analytic in the open unit disc D with $ \vert f(z)\vert\varphi (\vert z\vert) = o(1)$ and $ \vert f(z)\vert\varphi (\vert z\vert) = O(1),\vert z\vert \to 1$, respectively. In both spaces $ \left\Vert f\right\Vert _\varphi = {\sup _D}\vert f(z)\vert\varphi (\vert z\vert)$. Let $ {A^1}(\psi )$ denote the space of functions analytic in D with $ \left\Vert f\right\Vert _\psi = \smallint {\smallint _D}\vert f(z)\vert\psi (\vert z\vert)\;dx\;dy < \infty $. The spaces $ {A_0}(\varphi ),{A^1}(\psi )$, and $ {A_\infty }(\varphi )$ are identified in the obvious way with closed subspaces of $ {C_0}(D),{L^1}(D)$, and $ {L^\infty }(D)$, respectively. For a large class of weight functions $ \varphi ,\psi $ which go to zero at least as fast as some power of $ (1 - r)$ but no faster than some other power of $ (1 - r)$, we exhibit bounded projections from $ {C_0}(D)$ onto $ {A_0}(\varphi )$, from $ {L^1}(D)$ onto $ {A^1}(\psi )$, and from $ {L^\infty }(D)$ onto $ {A_\infty }(\varphi )$. Using these projections, we show that the dual of $ {A_0}(\varphi )$ is topologically isomorphic to $ {A^1}(\psi )$ for an appropriate, but not unique choice of $ \psi $. In addition, $ {A_\infty }(\varphi )$ is topologically isomorphic to the dual of $ {A^1}(\psi )$. As an application of the above, the coefficient multipliers of $ {A_0}(\varphi ),{A^1}(\psi )$, and $ {A_\infty }(\varphi )$ are characterized. Finally, we give an example of a weight function pair $ \varphi ,\psi $ for which some of the above results fail.


References [Enhancements On Off] (What's this?)

  • [1] Peter L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • [2] P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on 𝐻^{𝑝} spaces with 0<𝑝<1, J. Reine Angew. Math. 238 (1969), 32–60. MR 0259579
  • [3] P. L. Duren and A. L. Shields, Coefficient multipliers of 𝐻^{𝑝} and 𝐵^{𝑝} spaces, Pacific J. Math. 32 (1970), 69–78. MR 0255825
  • [4] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, https://doi.org/10.1007/BF01180596
  • [5] E. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, Berlin, 1929.
  • [6] J. Lindenstrauss and A. Pełczyúski, Contributions to the theory of the classical Banach spaces (preprint).
  • [7] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276–280. MR 0276744
  • [8] J. H. Shapiro, A. L. Shields and G. D. Taylor, The second duals of some function spaces (preprint).
  • [9] A. Zygmund, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889-895; erratum 9 (1959), 663. MR 0117498
  • [10] -, Trigonometric series, Vols. 1, 2, 2nd ed., Cambridge Univ. Press, London, 1968. MR 38 #4882.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.30, 30.00

Retrieve articles in all journals with MSC: 46.30, 30.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0283559-3
Keywords: Banach spaces, analytic functions, projections, topological direct sums, multiplier transforms
Article copyright: © Copyright 1971 American Mathematical Society