Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Spectral concentration and virtual poles. II


Author: James S. Howland
Journal: Trans. Amer. Math. Soc. 162 (1971), 141-156
MSC: Primary 47.48
DOI: https://doi.org/10.1090/S0002-9947-1971-0283618-5
MathSciNet review: 0283618
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Spectral concentration at an isolated eigenvalue of finite multiplicity of the selfadjoint operator $ {H_\varepsilon } = {T_\varepsilon } + {A_\varepsilon }{B_\varepsilon }$ is shown to arise from a pole of an analytic continuation of $ {A_\varepsilon }{({H_\varepsilon } - z)^{ - 1}}{B_\varepsilon }$. An application to quantum mechanical barrier penetration is given.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.48

Retrieve articles in all journals with MSC: 47.48


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0283618-5
Keywords: Spectral concentration, virtual pole, perturbation theory, Schroedinger equation
Article copyright: © Copyright 1971 American Mathematical Society