Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Inseparable splitting theory


Author: Richard Rasala
Journal: Trans. Amer. Math. Soc. 162 (1971), 411-448
MSC: Primary 12.45
DOI: https://doi.org/10.1090/S0002-9947-1971-0284421-2
MathSciNet review: 0284421
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If L is a purely inseparable field extension of K, we show that, for large enough extensions E of K, the E algebra $ L{ \otimes _K}E$ splits to become a truncated polynomial algebra. In fact, there is a unique smallest extension E of K which splits $ L/K$ and we call this the splitting field $ S(L/K)$ of $ L/K$. Now $ L \subseteq S(L/K)$ and the extension $ S(L/K)$ of K is also purely inseparable. This allows us to repeat the splitting field construction and obtain inductively a tower of fields. We show that the tower stabilizes in a finite number of steps and we study questions such as how soon must the tower stabilize. We also characterize in many ways the case when L is its own splitting field. Finally, we classify all K algebras A which split in a similar way to purely inseparable field extensions.


References [Enhancements On Off] (What's this?)

  • [1] L. Bégueri, Schéma d'automorphismes. Application a l'étude d'extensions finies radicielles, Bull. Sci. Math. (2) 93 (1965), 89-111.
  • [2] M. Demazure and A. Grothendieck, Schémas en groupes, fase. 2b, Séminaire Géométrie Algébrique, Inst. Hautes Études Sci., Paris, 1965. MR 34 #7519.
  • [3] G. Pickert, Eine Normalform für endliche rein-inseparable Körpererweiterungen, Math. Z 53 (1950), 133-135. MR 12, 316. MR 0037837 (12:316a)
  • [4] Séminaire Heidelberg-Strasbourg, Groupes Algébriques, 1965/66.
  • [5] M. E. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410; corrigendum, ibid. (2) 89 (1969), 206-207. MR 36 #6391; MR 38 #4451. MR 0223343 (36:6391)
  • [6] O. Zariski, The concept of a simple point of an abstract algebraic variety, Trans. Amer. Math. Soc. 62 (1947), 1-52. MR 9, 99. See also: Séminaire H. Cartan et C. Chevalley 1955/56, Géométrie Algébrique, Secrétariat mathématique, Paris, 1956. MR 20 #3871. MR 0021694 (9:99j)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12.45

Retrieve articles in all journals with MSC: 12.45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0284421-2
Keywords: Field, inseparable field extension, splitting, descent theory, truncated polynomial algebra, finite-dimensional algebra, artin ring, derivation, group scheme, automorphism scheme
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society