Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Concerning $ n$-mutual aposyndesis in products of continua


Author: Leland E. Rogers
Journal: Trans. Amer. Math. Soc. 162 (1971), 239-251
MSC: Primary 54F15
DOI: https://doi.org/10.1090/S0002-9947-1971-0293599-6
MathSciNet review: 0293599
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with Cartesian products of regular Hausdorff continua and certain conditions on the factors that make the product n-mutually aposyndetic (given n distinct points, there are n disjoint subcontinua, each containing one of the points in its interior). It is proved that the product of any three regular Hausdorff continua is n-mutually aposyndetic for each $ n \geqq 2$. Next, certain conditions on factors of products of two continua are shown to be sufficient for the product to be n-mutually aposyndetic. In connection with this, the concepts of n-semiaposyndesis and aposyndetic-terminal points are introduced. Finally, it is proved that the product of a simple closed curve (or any other ``super n-mutually aposyndetic'' continuum) with every compact Hausdorff continuum is n-mutually aposyndetic for each $ n \geqq 2$.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. MR 13, 265. MR 0043451 (13:265b)
  • [2] C. E. Burgess, Homogeneous continua, Summary of Lectures and Seminars, Summer Institute of Set Theoretic Topology, University of Wisconsin, Madison, Wis., 1955, pp. 75-78.
  • [3] H. S. Davis, D. P. Stadtlander and P. M. Swingle, Properties of the set function $ {T^n}$, Portugal. Math. 21 (1962), 113-133. MR 25 #5501. MR 0142108 (25:5501)
  • [4] R. W. FitzGerald, The cartesian product of non-degenerate compact continua is n-point aposyndetic, Topology Conference (Arizona State Univ., Tempe, Ariz., 1967), Arizona State University, Tempe, Ariz., 1968, pp. 324-326. MR 38 #5155. MR 0236861 (38:5155)
  • [5] J. B. Fugate, Decomposable chainable continua, Trans. Amer. Math. Soc. 123 (1966), 460-468. MR 33 #4906. MR 0196720 (33:4906)
  • [6] C. L. Hagopian, Mutual aposyndesis, Proc. Amer. Math. Soc. 23 (1969), 615-622. MR 40 #876. MR 0247612 (40:876)
  • [7] -, Concerning the cyclic connectivity of plane continua (to appear).
  • [8] -, Concerning arcwise connectedness and the existence of simple closed curves in plane continua, Trans. Amer. Math. Soc. 147 (1970), 389-402. MR 40 #8030. MR 0254823 (40:8030)
  • [9] -, Arcwise-connectedness of semiaposyndetic plane continua, Trans. Amer. Math. Soc. 158 (1971), 161-165. MR 0284981 (44:2205)
  • [10] -, An arc theorem for plane continua, Illinois J. Math. (to appear). MR 0314010 (47:2562)
  • [11] F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545-553. MR 3, 59. MR 0004771 (3:59e)
  • [12] -, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 9, 606. MR 0025161 (9:606h)
  • [13] -, Concerning the boundary of a complementary domain of a continuous curve, Bull. Amer. Math. Soc. 45 (1939), 428-435. MR 1563999
  • [14] R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 #709. MR 0150722 (27:709)
  • [15] L. E. Rogers, Mutually aposyndetic products of chainable continua, Pacific J. Math. (to appear). MR 0365522 (51:1774)
  • [16] R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460. MR 6, 96. MR 0010968 (6:96d)
  • [17] E. S. Thomas, Jr., Monotone decompositions of irreducible continua, Rozprawy Mat. 50 (1966), 74 pp. MR 33 #4907. MR 0196721 (33:4907)
  • [18] E. J. Vought and F. B. Jones, Stronger forms of aposyndetic continua, Topology Conference (Arizona State Univ., Tempe, Ariz., 1967), Arizona State University, Tempe, Ariz., 1968, pp. 170-173. MR 39 #925. MR 0239568 (39:925)
  • [19] G. T. Whyburn, Semi-locally connected sets, Amer. J. Math. 61 (1939), 733-749. MR 1, 31. MR 0000182 (1:31c)
  • [20] -, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54F15

Retrieve articles in all journals with MSC: 54F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0293599-6
Keywords: Aposyndetic continuum, aposyndesis, mutual aposyndesis, semiaposyndesis, terminal point, Cartesian product
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society