Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Symmetrization of distributions and its application


Author: Kuang-ho Chen
Journal: Trans. Amer. Math. Soc. 162 (1971), 455-471
MSC: Primary 46F10
DOI: https://doi.org/10.1090/S0002-9947-1971-0415308-X
MathSciNet review: 0415308
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let P be a polynomial such that k of the $ n - 1$ principal curvatures are different from zero at each point of $ N(P) = \{ s \in {R^n}:P(s) = 0\} ;N(P)$ is assumed to be nonempty, bounded, and $ n - 1$ dimensional. If $ {\text{Supp}}\;\varphi \subset {U^\delta } = \{ s \in {R^n}:\vert P(s)\vert < \delta \} $ with $ \delta $ small and $ \varphi \in C_c^\infty ({R^n})$, let $ {\varphi ^\rho }$ be the integral of $ \varphi $ over $ N(P - q)$ if $ q \in [ - \delta ,\delta ]$ and $ {\varphi ^\sigma }(s) = {\varphi ^\rho }(P(s))$ on $ {U^\delta }$ and $ = 0$ outside $ {U^\delta }$. Then $ {\varphi ^\sigma } \in C_c^\infty ({R^n})$. We define the symmetrization $ {v^\sigma }$ of a distribution v, with $ {\text{Supp}}\;v \subset {U^\delta }$, in a natural way. Setting $ u = {\mathcal{F}^{ - 1}}\{ v\} $ and $ {u_0} = {\mathcal{F}^{ - 1}}\{ {v^\sigma }\} $, we prove that $ {u_0}$ is the integral of the product of u with some function $ w(,)$ which depends only on P. This result is used to prove a Liouville type theorem for entire solutions of $ P( - i{D_x})u(x) = f(x)$, with $ f \in C_c^\infty ({R^n})$.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, Cambridge, 1932.
  • [2] A. Friedman, Generalized functions and partial differential equations, Prentice-Hall, Englewood Cliffs, N. J., 1963. MR 29 #2672. MR 0165388 (29:2672)
  • [3] -, Entire solutions of partial differential equations with constant coefficients, Duke Math. J. 31 (1964), 235-240. MR 28 #5255. MR 0162053 (28:5255)
  • [4] I. M. Gel'fand and G. E. Šilov, Generalized functions. Vol. 1: Properties and operations, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1964. MR 20 #4182; MR 29 #3869. MR 0435831 (55:8786a)
  • [5] -, Generalized functions. Vol. 2: Spaces of fundamental and generalized functions, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1968. MR 21 #5142a; MR 37 #5693. MR 0230128 (37:5693)
  • [6] I. M. Gel'fand and G. E. Šilov, Generalized functions. Vol. 3: Theory of differential equations, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1967. MR 21 #5142b; MR 36 #506. MR 0217416 (36:506)
  • [7] I. M. Gel'fand and Z. Ja. Šapiro, Homogeneous functions and their extensions, Uspehi Mat. Nauk 10 (1955), no. 3 (65), 3-70; English transl., Amer. Math. Soc. Transl. (2) 8 (1958), 21-85. MR 17, 371; MR 20 #1061. MR 0094547 (20:1061)
  • [8] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. MR 27 #5086. MR 0155146 (27:5086)
  • [9] -, Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. Amer. Math. Soc. 123 (1966), 449-459. MR 33 #6110. MR 0197951 (33:6110)
  • [10] C. Roumieu, Ultra-distributions définies sur $ {R^n}$ et sur certaines classes de variétés différentiables, J. Analyse Math. 10 (1962/63), 153-192. MR 28 #1487. MR 0158261 (28:1487)
  • [11] L. Schwartz, Théorie des distributions. Tomes 1, 2, Actualités Sci. Indust., no. 1091, 1122, Hermann, Paris, 1950, 1951. MR 12, 31; 833.
  • [12] J. F. Tréves, Lectures on linear partial differential equations with constant coefficients, Notas de Matemática, no. 27, Inst. Mat. Pura e Apl. do Conselho Nacional de Pesquisas, Rio de Janeiro, 1961. MR 27 #5020. MR 0155078 (27:5020)
  • [13] -, Linear partial differential equations with constant coefficients. Existence, approximations and regularity of solutions, Math. and its Applications, vol. 6, Gordon and Breach, New York, 1966. MR 37 #557. MR 0224958 (37:557)
  • [14] -, Differential polynomials and decay at infinity, Bull. Amer. Math. Soc. 66 (1960), 184-186. MR 22 #8227. MR 0117448 (22:8227)
  • [15] R. E. Williamson, R. H. Crowell and W. Trotter, Calculus of vector functions, 2nd ed., Prentice-Hall, Englewood Cliffs, N. J., 1968.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46F10

Retrieve articles in all journals with MSC: 46F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0415308-X
Keywords: Distribution, support of a distribution, fast-decreasing function, tempered distribution, symmetrization of a distribution (or function) with respect to a manifold, diffeomorphism, Dirac-measure on a manifold, quadratic symmetrization of a polynomial, Liouville type theorem
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society