Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Homology in varieties of groups. I


Author: C. R. Leedham-Green
Journal: Trans. Amer. Math. Soc. 162 (1971), 1-14
MSC: Primary 20.50; Secondary 18.00
DOI: https://doi.org/10.1090/S0002-9947-1971-99930-9
Part II: Trans. Amer. Math. Soc. (1971), 15-25
Part III: Trans. Amer. Math. Soc. (1971), 27-33
MathSciNet review: 0284510
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Well-known techniques allow one to construct a (co-) homology theory relative to a variety. After two paragraphs which discuss the modules to be considered and the construction of the (co-) homology groups, we come to our main homological result, namely that the theory is not always equivalent to a Tor or Ext. In the fourth paragraph we prove our main group-theoretic result; two covering groups of a finite group generate the same variety ``up to exponent". Finally we produce a restricted version of the Künneth formula.


References [Enhancements On Off] (What's this?)

  • [1] Michel André, Méthode simpliciale en algèbre homologique et algèbre commutative, Lecture Notes in Mathematics, Vol. 32, Springer-Verlag, Berlin-New York, 1967 (French). MR 0214644
  • [2] F. Bachmann, Kategorische Homologietheorie und Spectralsequenzen, Math. Report #17, Battelle Institute, 1969 (mimeograph).
  • [3] Michael Barr and Jon Beck, Acyclic models and triples, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 336–343. MR 0245649
  • [4] Michael Barr and Jon Beck, Homology and standard constructions, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Springer, Berlin, 1969, pp. 245–335. MR 0258917
  • [5] J. Beck, Triples and cohomology, Thesis, Columbia University, New York, 1965.
  • [6] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
  • [7] S. Eilenberg and S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199. MR 14, 670.
  • [8] Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 0053938, https://doi.org/10.2307/1969736
  • [9] Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959. MR 0103215
  • [10] J. Knopfmacher, Extentions in varieties of groups and algebras, Acta Math. 115 (1966), 17–50. MR 0213423, https://doi.org/10.1007/BF02392201
  • [11] B. Mitchell, Rings with several objects, Dalhousie University, 1970 (mimeograph).
  • [12] Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899
  • [13] G. S. Rinehart, Satellites and cohomology, J. Algebra 12 (1969), 295–329. MR 0245647, https://doi.org/10.1016/0021-8693(69)90032-5
  • [14] G. S. Rinehart, Errata: “Satellites and cohomology”, J. Algebra 14 (1970), 125–126. MR 0248201, https://doi.org/10.1016/0021-8693(70)90139-0
  • [15] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, Crelle 127 (1904), 20-50.
  • [16] -, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, Crelle 132 (1907), 85-137.
  • [17] Urs Stammbach, Homological methods in group varieties, Comment. Math. Helv. 45 (1970), 287–298. MR 0274561, https://doi.org/10.1007/BF02567332
  • [18] Myles Tierney and Wolfgang Vogel, Simplicial derived functors, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 167–180. MR 0242922
  • [19] Freidrich Ulmer, Acyclic models and Kan extensions, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 181–204. MR 0257186
    Freidrich Ulmer, Kan extensions, cotriples and André (co)homology, Category Theory, Homology Theory and their Applications, II (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Two), Springer, Berlin, 1969, pp. 278–308. MR 0257187
  • [20] Freidrich Ulmer, Acyclic models and Kan extensions, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 181–204. MR 0257186
    Freidrich Ulmer, Kan extensions, cotriples and André (co)homology, Category Theory, Homology Theory and their Applications, II (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Two), Springer, Berlin, 1969, pp. 278–308. MR 0257187

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20.50, 18.00

Retrieve articles in all journals with MSC: 20.50, 18.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-99930-9
Keywords: Variety of groups, (co-) homology of groups, triple homology, Kan extension, Rinehart's exact sequence, Fox derivative, group extension, Schur multiplier, covering group, Künneth formula
Article copyright: © Copyright 1971 American Mathematical Society