Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conformality and isometry of Riemannian manifolds to spheres


Authors: Chuan-chih Hsiung and Louis W. Stern
Journal: Trans. Amer. Math. Soc. 163 (1972), 65-73
MSC: Primary 53.72
DOI: https://doi.org/10.1090/S0002-9947-1972-0284948-4
MathSciNet review: 0284948
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that a compact Riemannian manifold $ {M^n}$ of dimension $ n > 2$ admits an infinitesimal nonisometric conformal transformation $ \upsilon $. Some curvature conditions are given for $ {M^n}$ to be conformal or isometric to an $ n$-sphere under the initial assumption that $ {L_\upsilon }R = 0$, where $ {L_\upsilon }$ is the operator of the infinitesimal transformation $ \upsilon $ and $ R$ is the scalar curvature of $ {M^n}$. For some special cases, these conditions were given by Yano [10] and Hsiung [2].


References [Enhancements On Off] (What's this?)

  • [1] C. C. Hsiung, Vector fields and infinitesimal transformations on Riemannian manifolds with boundary, Bull. Soc. Math. France 92 (1964), 411-434. MR 31 #2693. MR 0178436 (31:2693)
  • [2] -, On the group of conformal transformations of a compact Riemannian manifold, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1509-1513. MR 32 #6372. MR 0188945 (32:6372)
  • [3] -, On the group of conformal transformations of a compact Riemannian manifold, III, J. Differential Geometry 2 (1968), 185-190. MR 38 #1637. MR 0233315 (38:1637)
  • [4] C. C. Hsiung and L. R. Mugridge, Conformal changes of metrics on a Riemannian manifold, Math. Z. 119 (1971), 179-187. MR 0279735 (43:5456)
  • [5] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
  • [6] -, Sur les transformations conformes d'une Variété riemannienne compacte, C. R. Acad. Sci. Paris 259 (1964), 697-700. MR 29 #4007. MR 0166734 (29:4007)
  • [7] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. MR 25 #5479. MR 0142086 (25:5479)
  • [8] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275. MR 30 #4229. MR 0174022 (30:4229)
  • [9] K. Yano, On harmonic and Killing vector fields, Ann. of Math. (2) 55 (1952), 38-45. MR 13, 689. MR 0046122 (13:689a)
  • [10] -, On Riemannian manifolds admitting an infinitesimal conformal transformation Math. Z. 113 (1970), 205-214. MR 41 #6114. MR 0261501 (41:6114)
  • [11] K. Yano and T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. (2) 69 (1959), 451-461. MR 21 #345. MR 0101535 (21:345)
  • [12] K. Yano and M. Obata, Sur le groupe de transformations conformes d'une Variété de Riemann dont le scalaire de courbure est constant, C. R. Acad. Sci. Paris 260 (1965), 2698-2700. MR 31 #697. MR 0176425 (31:697)
  • [13] -, Conformal changes of Riemannian metrics, J. Differential Geometry 4 (1970), 53-72. MR 41 #6113. MR 0261500 (41:6113)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53.72

Retrieve articles in all journals with MSC: 53.72


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0284948-4
Keywords: Infinitesimal nonisometric conformal transformations, scalar curvature, lengths of Riemann and Ricci curvature tensors
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society