Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Branched structures on Riemann surfaces


Author: Richard Mandelbaum
Journal: Trans. Amer. Math. Soc. 163 (1972), 261-275
MSC: Primary 30.45
DOI: https://doi.org/10.1090/S0002-9947-1972-0288253-1
MathSciNet review: 0288253
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Following results of Gunning on geometric realizations of projective structures on Riemann surfaces, we investigate more fully certain generalizations of such structures.

We define the notion of a branched analytic cover on a Riemann surface $ M$ (of genus $ g$) and specialize this to the case of branched projective and affine structures. Establishing a correspondence between branched projective and affine structures on $ M$ and the classical projective and affine connections on $ M$ we show that if a certain linear homogeneous differential equation involving the connection has only meromorphic solutions on $ M$ then the connection corresponds to a branched structure on $ M$. Utilizing this fact we then determine classes of positive divisors on $ M$ such that for each divisor $ \mathfrak{D}$ in the appropriate class the branched structures having $ \mathfrak{D}$ as their branch locus divisor form a nonempty affine variety. Finally we apply some of these results to study the structures on a fixed Riemann surface of genus 2.


References [Enhancements On Off] (What's this?)

  • [1] R. C. Gunning, Lectures on Riemann surfaces, Princeton Math. Notes, Princeton Univ. Press, Princeton, N. J., 1966. MR 34 #7789. MR 0207977 (34:7789)
  • [2] -, Lectures on vector bundles over Riemann surfaces, Univ. of Tokyo Press, Tokyo; Princeton Univ. Press, Princeton, N. J., 1967. MR 37 #5888. MR 0230326 (37:5888)
  • [3] -, Special coordinate coverings of Riemann surfaces, Math. Ann. 170 (1967), 67-86. MR 34 #7790. MR 0207978 (34:7790)
  • [4] -, Connections for a class of pseudogroup structures, Proc. Conference Complex Analysis (Minneapolis, 1964), Springer, Berlin and New York, 1965, pp. 186-194. MR 31 #2684. MR 0178427 (31:2684)
  • [5] L. Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94-97. MR 22 #2694. MR 0111834 (22:2694)
  • [6] -, Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215-228. MR 24 #A2022. MR 0132175 (24:A2022)
  • [7] I. Kra, Deformations of Fuchsian groups, Duke Math. J. (to appear). MR 0265582 (42:491)
  • [8] -, On affine and projective structures on Riemann surfaces, J. Analyse Math. 22 (1969), 285-298. MR 0248335 (40:1587)
  • [9] M. Schiffer and N. S. Hawley, Connections and conformal mapping, Acta Math. 107 (1962), 175-274. MR 32 #202. MR 0182720 (32:202)
  • [10] H. Röhrl, On holomorphic families of fibre bundles over the Riemannian sphere, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/61), 435-477. MR 24 #A1728. MR 0131881 (24:A1728)
  • [11] Th. Meis, Die minimale Blätterzahl der Konkretisierung einer kompakten Riemannschen Fläche, Schr. Math. Inst. Univ. Münster No. 16 (1960). MR 26 #5158. MR 0147643 (26:5158)
  • [12] W. E. Boyce and R. C. Di Prima, Elementary differential equations and boundary value problems, Wiley, New York, 1965. MR 31 #3651. MR 0179403 (31:3651)
  • [13] E. Hille, Lectures on ordinary differential equations, Addison-Wesley, Reading, Mass., 1969. MR 40 #2939. MR 0249698 (40:2939)
  • [14] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, Mass., 1957. MR 19, 1169. MR 0092855 (19:1169g)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.45

Retrieve articles in all journals with MSC: 30.45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0288253-1
Keywords: Branched structures, Riemann surfaces, affine structure, projective structure, affine connection, projective connection, divisor, affine variety, quadratic differentials, abelian differentials, Weierstrass points
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society