Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A theorem of completeness for families of compact analytic spaces


Author: John J. Wavrik
Journal: Trans. Amer. Math. Soc. 163 (1972), 147-155
MSC: Primary 32G05
DOI: https://doi.org/10.1090/S0002-9947-1972-0294702-5
MathSciNet review: 0294702
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sufficient condition is given for a family of compact analytic spaces to be complete. This condition generalizes to analytic spaces the Theorem of Completeness of Kodaira and Spencer [6]. It contains, as a special case, the rigidity theorem proved by Schuster in [11].


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291. MR 38 #344. MR 0232018 (38:344)
  • [2] A. Douady, Le Problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 1, 1-95. MR 34 #2940. MR 0203082 (34:2940)
  • [3] -, Le problème des modules pour les variétés analytiques complexes, Séminaire Bourbaki 1964/65, exposé 277, Benjamin, New York, 1966. MR 33 #54201.
  • [4] A. Grothendieck, Techniques de construction en géométrie analytique I-X, Séminaire Henri Cartan 1960/61, 2ième éd., École Normale Supérieure, Secréetariat mathématique, Paris 1962. MR 26 #3562.
  • [5] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328-466. MR 22 #3009. MR 0112154 (22:3009)
  • [6] -, A theorem of completeness for complex analytic fibre spaces, Acta. Math. 100 (1958), 281-294. MR 22 #3010. MR 0112155 (22:3010)
  • [7] M. Kuranishi, On the locally complete families of complex analytic structures, Ann. of Math. (2) 75 (1962), 536-577. MR 25 #4550. MR 0141139 (25:4550)
  • [8] -, New proof for the existence of locally complete families of complex structures, Proc. Conference Complex Analysis (Minneapolis, 1964), Springer, Berlin and New York, 1965. MR 31 #768. MR 0176496 (31:768)
  • [9] G. Pourcin, Théorème de Douady au-dessus de S, Ann. Scuola. Norm. Sup. Pisa (3) 23 (1969), 451-459. MR 41 #2053. MR 0257402 (41:2053)
  • [10] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. MR 36 #184. MR 0217093 (36:184)
  • [11] H. W. Schuster, Über die Starrheit kompakter komplexer Räume, Manuscripta Math. 1 (1969), 125-137. MR 40 #7478. MR 0254269 (40:7478)
  • [12] -, Zur Theorie der Deformationen kompakter komplexer Räume, Invent. Math. 9 (1970), 284-294. MR 0268921 (42:3818)
  • [13] J. J. Wavrik, Deformations of branched coverings of complex manifolds, Amer. J. Math. 90 (1968), 926-960. MR 38 #1706. MR 0233384 (38:1706)
  • [14] -, Obstructions to the existence of a space of moduli, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 403-414. MR 40 #8089. MR 0254882 (40:8089)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32G05

Retrieve articles in all journals with MSC: 32G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0294702-5
Keywords: Deformation theory, families of analytic spaces, quasi-representable functor, Kuranishi space, completeness
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society