Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fully nuclear and completely nuclear operators with applications to $ \mathcal{L}_1-$ and $ \mathcal{L}_\infty$-spaces


Authors: C. P. Stegall and J. R. Retherford
Journal: Trans. Amer. Math. Soc. 163 (1972), 457-492
MSC: Primary 46B05; Secondary 47B10
DOI: https://doi.org/10.1090/S0002-9947-1972-0415277-3
MathSciNet review: 0415277
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to a study of the conjecture of A. Grothendieck that if $ E$ and $ F$ are Banach spaces and all operators from $ E$ to $ F$ are nuclear, then $ E$ or $ F$ must be finite dimensional. Two partial solutions are given to this conjecture (Chapters II and IV). In these chapters, operators we call fully nuclear and completely nuclear are introduced and studied. The principal result of these two chapters is that if $ \mathcal{L}(E,F) = \operatorname{FN} (E,F)$ or $ \mathcal{L}(E,F) = \operatorname{CN} (E,F)$ (and $ E$ is isomorphic to a conjugate space or $ E'$ contains a reflexive subspace in the latter case) then one of $ E$, $ F$ is finite dimensional.

Two new properties of Banach spaces are introduced in Chapter I. We call these properties ``sufficiently Euclidean'' and ``the two-series property". Chapter I provides the machinery for all the subsequent chapters.

The principal part of the paper (Chapters II and V) is devoted to internal characterizations of the $ {\mathcal{L}_\infty }$ - and $ {\mathcal{L}_1}$-spaces of Lindenstrauss and Pełlczyhski. These characterizations are in terms of the behavior of various classes of operators from or into these spaces. As a by-product an apparently new characterization of Hilbert spaces is obtained.

Finally, Chapter VI is a summary of the known characterizations of $ {\mathcal{L}_1}$ - and $ {\mathcal{L}_\infty }$ -spaces.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
  • [2] S. Banach and S. Mazur, Zur Theorie der linearen Dimension, Studia Math. 4 (1933), 100-112.
  • [3] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911. MR 19, 756. MR 0090020 (19:756a)
  • [4] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem, 1960, pp. 123-160. MR 25 #2518. MR 0139079 (25:2518)
  • [5] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197. MR 11, 525. MR 0033975 (11:525a)
  • [6] M. M. Grinblyum, On the representation of a space of type B in the form of a direct sum of subspaces, Dokl. Akad. Nauk SSSR 70 (1950), 749-752. MR 11, 525. MR 0033977 (11:525c)
  • [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [8] -, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1-79. MR 20 #1194. MR 0094682 (20:1194)
  • [9] -, Sur certaines classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers, Bol. Soc. Mat. São Paulo 8 (1953), 81-110. MR 20 #1195. MR 0094683 (20:1195)
  • [10] B. Grünbaum, Projection constants, Trans. Amer. Math. Soc. 95 (1960), 451-465. MR 22 #4937. MR 0114110 (22:4937)
  • [11] V. I. Gurariĭ, Inclinations of subspaces and conditional bases in Banach space, Dokl. Akad. Nauk SSSR 145 (1962), 504-506 = Soviet Math. Dokl. 3 (1962), 1028-1030. MR 27 #2835. MR 0152863 (27:2835)
  • [12] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527. MR 12, 616. MR 0039915 (12:616b)
  • [13] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, Monografie Mat., Tom 6, PWN, Warsaw, 1935; reprint, Chelsea, New York, 1951. MR 20 #1148.
  • [14] S. Kakutani, Some characterizations of Euclidean space, Japan. J. Math. 16 (1939), 93-97. MR 0000895 (1:146d)
  • [15] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No. 48 (1964). MR 31 #3828. MR 0179580 (31:3828)
  • [16] -, On a certain subspace of $ {l_1}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 539-542. MR 30 #5153. MR 0174963 (30:5153)
  • [17] -, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J. 10 (1963), 241-252. MR 29 #6316. MR 0169061 (29:6316)
  • [18] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $ {L_p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 37 #6743. MR 0231188 (37:6743)
  • [19] J. Lindenstrauss and H. P. Rosenthal, The $ {L_p}$-spaces, Israel J. Math. 7 (1969), 325-349. MR 0270119 (42:5012)
  • [20] A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkeiĭ Funkcional. Anal, i Priložen. No. 2 (1966), 150-156. (Russian) MR 34 #6513. MR 0206695 (34:6513)
  • [21] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. MR 23 #A3441. MR 0126145 (23:A3441)
  • [22] A. Pełczyńiski and M. I. Kadec, Bases, lacunary sequences and complemented subspaces in the spaces $ {L_p}$, Studia Math. 21 (1962), 161-176.
  • [23] A. Pietsch, Nukleare lokalkonvexe Räume, Akademie-Verlag, Berlin, 1965. MR 31 #6114. MR 0181888 (31:6114)
  • [24] -, Absolut $ p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353.
  • [25] -, Quasinukleare Abbildungen in normierten Räumen, Math. Ann. 165 (1966), 76-90. MR 0198253 (33:6412)
  • [26] H. P. Rosenthal, Projections onto translation-invariant subspaces of $ {L^p}(G)$, Mem. Amer. Math. Soc. No. 63 (1966). MR 35 #2080. MR 0211198 (35:2080)
  • [27] -, On complemented and quasi-complemented subspaces of quotients of $ C(S)$ for Stonian $ S$, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165-1169. MR 37 #6740. MR 0231185 (37:6740)
  • [28] D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241-255. MR 32 #8120. MR 0190708 (32:8120)
  • [29] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [30] L. Schwartz, Produits tensoriels topologiques d'espaces vectoriels topologiques, Séminaire Schwartz de la Faculté des Sciences de Paris, 1953/54, Secrétariat mathématique, Paris, 1954. MR 17, 764.
  • [31] A. Sobczyk, Projections in Minkowski and Banach spaces, Duke Math. J. 8 (1941), 78-106. MR 2, 220. MR 0003443 (2:220e)
  • [32] -, Projection of the space $ (m)$ on its subspace $ ({c_0})$, Bull. Amer. Math. Soc. 47 (1941), 938-947. MR 3, 205. MR 0005777 (3:205f)
  • [33] W. Wilson, On the selection of basic sequences in Banach spaces, Thesis, Louisiana State University, Baton Rouge, 1969.
  • [34] M. Zippin, H. P. Rosenthal and W. B. Johnson, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. MR 0280983 (43:6702)
  • [35] M. M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1958. MR 20 #1187. MR 0094675 (20:1187)
  • [36] D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89-108. MR 12, 266. MR 0037465 (12:266c)
  • [37] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $ C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 15, 438. MR 0058866 (15:438b)
  • [38] J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), 38-48. MR 26 #4169. MR 0146649 (26:4169)
  • [39] G. Köthe, Hebbare lokalkonvexe Räume, Math. Ann. 165 (1966), 181-195. MR 33 #4651. MR 0196464 (33:4651)
  • [40] S. Kwapień, Some remarks on $ (p,q)$-absolutely summing operators in $ {L_p}$-spaces, Studia Math. 29 (1968), 327-337. MR 37 #6767. MR 0231212 (37:6767)
  • [41] A. Pietsch and A. Perrson, $ p$-nukleare and $ p$-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19-62. MR 39 #4645. MR 0243323 (39:4645)
  • [42] (a) C. P. Stegall, Operator characterizations of $ {\mathcal{L}_\infty }$-and $ {\mathcal{L}_1}$-spaces, Bull. Polon. Acad. Sci. 19 (1971), 73-75. MR 0282202 (43:7915)
  • 1. (b) C. P. Stegall and J. R. Retherford, Fully nuclear operators, Bull. Amer. Math. Soc. 76 (1970), 1077-1081. MR 0271707 (42:6588)
  • [43] A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1961. MR 0098966 (20:5411)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B05, 47B10

Retrieve articles in all journals with MSC: 46B05, 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0415277-3
Keywords: Absolutely summing operators, nuclear operator, fully nuclear operator, completely nuclear operator, $ {\mathcal{L}_p}$-spaces, sufficiently Euclidean spaces
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society