ENTROPY-EXPANSIVE MAPS

BY

RUFUS BOWEN

Abstract. Let \(f: X \to X \) be a uniformly continuous map of a metric space. \(f \) is called \(h \)-expansive if there is an \(\varepsilon > 0 \) so that the set \(\Phi_{\varepsilon}(x) = \{ y : d(f^n(x), f^n(y)) \leq \varepsilon \} \) for all \(n \geq 0 \) has zero topological entropy for each \(x \in X \). For \(X \) compact, the topological entropy of such an \(f \) is equal to its estimate using \(\varepsilon : h(f) = h(f, \varepsilon) \). If \(X \) is compact finite dimensional and \(\mu \) an invariant Borel measure, then \(h_\mu(f) = h_\mu(f, A) \) for any finite measurable partition \(A \) of \(X \) into sets of diameter at most \(\varepsilon \). A number of examples are given. No diffeomorphism of a compact manifold is known to be not \(h \)-expansive.

Let \(f: X \to X \) be a homeomorphism of a metric space. For \(\varepsilon > 0 \) and \(x \in X \) define

\[\Gamma_{\varepsilon}(x) = \{ y \in X : d(f^n(y), f^n(x)) \leq \varepsilon \} \text{ for all } n \in \mathbb{Z}. \]

\(f \) is called expansive if for some \(\varepsilon \) these sets are as small as possible, i.e. if \(\Gamma_{\varepsilon}(x) = \{ x \} \) for all \(x \). We are concerned with entropy and shall call \(f \) \(h \)-expansive provided that for some \(\varepsilon > 0 \) the \(\Gamma_{\varepsilon}(x) \) are negligible in terms of entropy, i.e. if the topological entropy \(h(f, \Gamma_{\varepsilon}(x)) = 0 \) for all \(x \).

We have two main results for \(h \)-expansive maps with \(X \) compact. First, the topological entropy satisfies \(h(f) = h(f, \varepsilon) \). Second, assuming \(X \) is finite dimensional, \(h_\mu(f) = h_\mu(f, A) \) when \(\mu \) is an \(f \)-invariant normalized Borel measure on \(X \) and \(A \) is a finite measurable partition of \(X \) into sets of diameter at most \(\varepsilon \). Both these results are well known in case \(f \) is expansive (see [11] and [14] respectively). Arov [2] noted that the second statement was true for \(f \) an endomorphism of a torus and \(\mu \) Haar measure when he calculated \(h_\mu(f) \) for this case (see Example 1.2).

1. Definitions and examples. We now review the definition of topological entropy given in [4]. For \(X \) compact this definition was given independently by Dinaburg [7]; is related to the \(\varepsilon \)-entropy of Kolmogorov [12]. Topological entropy was defined first in [1].

Let \(f: X \to X \) be uniformly continuous on the metric space \(X \). For \(E, F \subseteq X \) we say that \(E(n, \delta) \)-spans \(F \) (with respect to \(f \)), if for each \(y \in F \) there is an \(x \in E \) so that \(d(f^n(x), f^n(y)) \leq \delta \) for all \(0 \leq k < n \). We let \(r_n(F, \delta) = r_n(F, \delta, f) \) denote the minimum cardinality of a set which \((n, \delta)\)-spans \(F \). If \(K \) is compact, then the continuity of \(f \) guarantees \(r_n(K, \delta) < \infty \). For compact \(K \) we define

\[\tilde{r}_f(K, \delta) = \limsup_{n \to \infty} \frac{1}{n} \log r_n(K, \delta) \]

Received by the editors January 20, 1971.

Key words and phrases. Entropy, \(h \)-expansive.

Copyright © 1972, American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and
\[h(f, K) = \lim_{\delta \to 0} \tilde{r}_f(K, \delta) \]
(notice that \(\tilde{r}_f(K, \delta) \) increases as \(\delta \) decreases). Finally let \(h(f) = \sup_K h(f, K) \) where \(K \) varies over all compact subsets of \(X \). If \(X \) is compact, then \(h(f) = h(f, X) \) and we write \(h(f, \delta) = \tilde{r}_f(X, \delta) \).

Let \(\Phi_t(x) = \bigcap_{n \geq 0} f^{-n}B_\varepsilon(f^n(x)) = \{ y : d(f^n(x), f^n(y)) \leq \varepsilon \text{ for } n \geq 0 \} \) and \(h_\varepsilon^*(\varepsilon) = \sup_{x \in X} h(f, \Phi_t(x)) \). \(f \) is called \(h \)-expansive if \(h_\varepsilon^*(\varepsilon) = 0 \) for some \(\varepsilon > 0 \). In case \(f \) is a homeomorphism we set
\[\Gamma_\varepsilon(x) = \bigcap_{n \in \mathbb{Z}} f^{-n}B_\varepsilon(f^n(x)) \]
and
\[h_{\text{homeo}}^*(\varepsilon) = \sup_{x \in X} h(f, \Gamma_\varepsilon(x)) \].

Remark. For \(f \) a homeomorphism, \(\Gamma_\varepsilon(x) \subseteq \Phi_\varepsilon(x) \) and so \(h_{\text{homeo}}^*(\varepsilon) \leq h_\varepsilon^*(\varepsilon) \). The definition of \(h \)-expansiveness for homeomorphisms mentioned in the introduction, namely \(h_{\text{homeo}}^*(\varepsilon) = 0 \), is actually equivalent to the above one in case \(X \) is compact.

For in 2.3 we prove \(h_\varepsilon^*(\varepsilon) = h_{\text{homeo}}^*(\varepsilon) \) when \(X \) compact.

Example 1.0. Expansive maps.

Example 1.1. If \(f: \mathbb{R}^n \to \mathbb{R}^n \) is linear and \(d \) comes from a norm, then \(h_\varepsilon^*(\varepsilon) = 0 \) for every \(\varepsilon \).

Proof. \(f \) decomposes into a direct sum of linear maps \(f = f_1 \oplus f_2: E_1 \oplus E_2 \to E_1 \oplus E_2 \) where \(f_1 \)’s eigenvalues have norm at most 1 and \(f_2 \)’s have norm greater than 1. If \(u \in E_2, u \neq 0 \), then \(d(f_2(u), 0) \to \infty \text{ as } n \to \infty \). It follows that \(\Phi_t(0) \subseteq E_1 \). But \(h(f|E_1) = h(f_1) = 0 \) by Theorem 15 of \([4]\). So \(h(f, \Phi_t(0)) = 0 \). But \(\Phi_t(x) = \Phi_t(0) + x \) and \(h(f, K + x) = h(f, K) \) for any compact set \(K \).

Example 1.2. An endomorphism \(f \) of a Lie group \(G \) is \(h \)-expansive.

Proof. Here we use a right invariant metric \(d \). Then one checks \(\Phi_t(x) = \Phi_t(e) x \) and \(h(f, Kx) = h(f, K) \) for compact \(K \). So it is enough to see \(h(f, \Phi_t(e)) = 0 \) for some \(\varepsilon \).

Now
\[
\begin{array}{ccc}
T_\varepsilon G & \xrightarrow{df} & T_\varepsilon G \\
\downarrow \exp & & \downarrow \exp \\
G & \xrightarrow{f} & G
\end{array}
\]
commutes and \(\exp \) is a homeomorphism of a small neighborhood \(B_\varepsilon(0) \subseteq T_\varepsilon G \) onto a neighborhood of some \(B_\varepsilon(e) \). Then \(\Phi_t(e, f) \subseteq \exp \Phi_\varepsilon(0, df) \) and since \(f|\exp \Phi_\varepsilon(0, df) \) is a quotient of \(df|\Phi_\varepsilon(0, df) \) one has
\[h(f, \Phi_t(e, f)) \leq h(df, \Phi_\varepsilon(0, df)) = 0. \]

Example 1.3. Suppose \(f \) is \(h \)-expansive and \(T \) a uniformly continuous map so that \((T \cdot f)^n = T_n \cdot f^n \) for \(n \geq 0 \) where the \(T_n \) are isometries. Then \(T \cdot f \) is \(h \)-expansive.
Proof. One checks easily that $0 \leq (x, T^n) = \Phi(x, f^n)$ and that a set which (n, δ)-spans some $F \subseteq X$ with respect to f also (n, δ)-spans F with respect to $T \cdot f$. It follows that

$$h(T \cdot f, \Phi(x, T \cdot f)) \leq h(f, \Phi(x, f)) = 0.$$

Example 1.3*. Let G be a Lie group and for $g, u \in G$ define $L_g(u) = gu$ and $R_g(u) = ug$. If f is an endomorphism of G and $g \in G$, then the affine maps $R_g \cdot f$, $f \cdot R_g$, $L_g \cdot f$ and $f \cdot L_g$ are all h-expansive.

Proof. If we set $g_1 = g$ and $g_{n+1} = f(g_n)g$, one sees that $(R_g \cdot f)^n = R_{g_n} \cdot f^n$. As we use a right invariant metric, R_{g_n} is an isometry and 1.3 applies. Now $(L_g \cdot f)(u) = gf(u)(g^{-1})g = (R_g \cdot f^*)(u)$ where $f^*(u) = gf(u)g^{-1}$ is an endomorphism. We leave $f \cdot R_g$ and $f \cdot L_g$ to the reader.

Example 1.4. Suppose H is a uniformly discrete subgroup of the Lie group G, i.e. G/H is compact and $\pi: G \rightarrow G/H$ given by $\pi(x) = xH$ is a covering. For an endomorphism of G with $f(H) \subseteq H$ and $g \in G$ define f^* on G/H by $f^*(uH) = gf(u)H$. Then f^* is h-expansive.

Proof. For small enough π maps $B_\delta(x)$ isometrically onto $B_\delta(xH)$ for every x and $\pi \Phi(x, L_g \cdot f) = \Phi(xH, f^*)$. Then

$$h(f^*, \Phi(x, L_g \cdot f^*)) \leq h(L_g \cdot f, \Phi(x, L_g \cdot f)) = 0.$$

So f^* is h-expansive (see [4] for some more details).

Example 1.5. For the case of X compact define the nonwandering set

$$\Omega(f) = \left\{ x \in X : \text{for every neighborhood } U \text{ of } x, U \cap \bigcup_{n \geq 0} f^n(U) \neq \emptyset \right\}.$$

Then $f|\Omega(f) = \Omega(f)$. If $f|\Omega(f)$ is h-expansive, then so is f. An example of this is one of Smale’s Axiom A diffeomorphisms [15], where $f|\Omega(f)$ is expansive.

Proof. Splice together the proof of Theorem 2.4 in [5] and that of 2.2 below for $f|\Omega$, $a = 0$ and x staying in a neighborhood of Ω up to time n.

Example 1.6. Suppose $\Phi = \{\varphi_t: X \rightarrow X\}_{t \in \mathbb{R}}$ is a continuous flow on a compact metric space X. Suppose also that there are $\varepsilon > 0$ and $\delta > 0$ so that

$$\Gamma_{\varepsilon}(x, \Phi) = \{y \in X : d(\varphi_t(y), \varphi_t(x)) \leq \varepsilon \text{ for all } t \in \mathbb{R}\} \subseteq \varphi_{t-s} \cdot \Phi \subseteq \varphi_{t+s} \cdot \Phi \text{ for all } |r| \leq \delta.$$

Then each φ_t is h-expansive.

Proof. For any $t \in \mathbb{R}$ there is a δ so that $d(x, y) \leq \delta$ implies $d(\varphi_t(x), \varphi_t(y)) \leq \varepsilon$ for all $|r| \leq \delta$. Then

$$\Gamma_{\varepsilon}(x, \varphi_t) \subseteq \Gamma_{\varepsilon}(x, \Phi) \subseteq \varphi_{t-s} \cdot \Phi \subseteq \varphi_{t+s} \cdot \Phi.$$

For $\beta > 0$ choose $\alpha > 0$ such that for all $x \in X$ and all $|r| \leq \alpha$ we have $d(x, \varphi_r(x)) \leq \delta$ (here we use X compact). Let K be a set of numbers so that every point in $[-s, s]$ is...
within α of one of them. Then \{$\varphi_u(x) : u \in K$\} (n, δ)-spans $\varphi_{t-s}(x)$ with respect to φ_t. Hence
\[r_n(\varphi_{t-s}(x), \delta, \varphi_t) \leq \text{card } K \]
and
\[h(\varphi_t, r_n(x, \varphi_t)) \leq h(\varphi_t, \varphi_{t-s}(x)) = 0. \]

Example 1.6. Let $\Phi = \{\varphi_t\}$ be one of Smale’s Axiom A flows [15]. Then $\Phi|\Omega(\Phi)$ satisfies the condition of 1.6 [9]. By 1.5 and 1.6, each φ_t is h-expansive.

Problem. Find some differentiable maps which are not h-expansive.

2. Calculating topological entropy.

Assumption. For the remainder of the paper X is compact.

Lemma 2.1. Suppose $0 = t_0 < t_1 < \cdots < t_{r-1} < t_r = n$ and $E_i(t_{i+1} - t_i, \alpha)$-spans $f^i(F)$ for $0 \leq i < r$. Then
\[r_n(F, 2\alpha) \leq \prod_{0 \leq i < r} \text{card } E_i. \]

Proof. For $x_i \in E_i$ write
\[V(x_0, \ldots, x_{r-1}) = \{x \in F : d(f^{t_j}(x), f^i(x_i)) \leq \alpha \text{ for } 0 \leq j < t_{i+1} - t_i, 0 \leq i < r\}. \]
If $x, y \in V(x_0, \ldots, x_{r-1})$, then by the triangle inequality $d(f^{s}(x), f^s(y)) \leq 2\alpha$ for $0 \leq s < n$. Since $F = \bigcup V(x_0, \ldots, x_{r-1})$ we get an $(n, 2\alpha)$-spanning set for F by taking one element from each nonempty $V(x_0, \ldots, x_{r-1})$.

Proposition 2.2. Let $a = h^*_f(e)$ or $h^*_f,\text{homeo}(e)$ (in case f is a homeomorphism). Then for every $\delta > 0$ and $\beta > 0$ there is a c such that
\[r_n\left(\bigcap_{k=0}^{n-1} f^{-k}B_e(f^k(x)), \delta \right) \leq ce^{(a + \beta)n} \]
for all $x \in X$.

Proof. We do the case where f is a homeomorphism and $a = h^*_f,\text{homeo}(e)$. The case where $a = h^*_f(e)$ is slightly simpler and we leave the necessary modifications to the reader.

For each $y \in X$ pick $m(y)$ so that $a + \beta \geq (1/m(y)) \log \text{card } E(y)$ where $E(y)$ is a set which $(m(y), \frac{1}{4} \delta)$-spans $\Gamma_y(y)$. Then $U(y) = \{w \in X : \exists z \in E(y) \text{ such that } d(f^k(w), f^k(z)) < \frac{1}{4} \delta \text{ for all } 0 \leq k < m(y)\}$ is an open neighborhood of the compact set $\Gamma_y(y)$. Let $S_M = \bigcap_{1 \leq M} f^{-1}B_e(f^M(y))$. Then $S_0 \supset S_1 \supset \cdots$ is a decreasing chain of compact sets with intersection $\Gamma_y(y)$; hence there is an integer $N(y)$ so that $S_{N(y)} \subset U(y)$. Consider the compact sets $W_y = \bigcap_{1 \leq N(y)} f^{-1}B_e(f^N(y))$. Then $\bigcap_{s > e} W_y = W_{\epsilon} = S_{N(y)} \subset U(y)$; hence, $W_{\epsilon} \subset U(y)$ for some $\gamma > \epsilon$. Let $V(y)$ be a neighborhood of y such that $d(f^j(u), f^j(y)) < \gamma - \epsilon$ for $|j| \leq N(y)$ when $u \in V(y)$. Then $B_e(f^j(u)) \subset B_e(f^j(y))$ and
\[\bigcap_{|j| \leq N(y)} f^{-j}B_e(f^j(u)) \subset U(y). \]
Let \(V(y_1), \ldots, V(y_s) \) cover the compact space \(X \) and

\[
N = \max \{ N(y_1), \ldots, N(y_s), m(y_1), \ldots, m(y_s) \} + 1.
\]

Consider now any \(x \in X \) and \(F_n = \bigcap_{k=0}^{n-1} f^{-k}B_x(f^k(x)) \). For any \(t \in [N, n-N] \), \(f^t(x) \) is in some \(V(y_i) \) and

\[
f^t(F_n) = \bigcap_{k=-t}^{n-1-t} f^{-k}B_x(f^k(f^t(x))) \subset \bigcap_{k \leq N(y)} f^{-k}B_x(f^k(f^t(x))) \subset U(y_i).
\]

Now \(E(y_i) \) \((m(y_i), \frac{1}{2}\delta)\)-spans \(U(y_i) \), so it does \(f^t(F_n) \) also.

We shall define integers \(0 = t_0 < t_1 < \cdots < t_r = n \). If \(n \leq N \), let \(r = 1 \) and \(t_1 = n \). If \(n > N \), take \(t_1 = N \) and pick \(V(y_i) \) containing \(f^{t_1}(x) \). Suppose we have chosen \(t_1, \ldots, t_k \) and \(y_1, \ldots, y_k \) (with \(t_k < n \)). If \(t_k > n - N \), then set \(r = k + 1 \) and \(t_r = N \). If \(t_k \leq n - N \), then set \(t_{k+1} = t_k + m(y_{ik}) < n \) and choose \(V(y_{ik+1}) \) containing \(f^{t_{k+1}}(x) \). Eventually this process stops.

Let \(K \) be a set which \((N, \frac{1}{2}\delta)\)-spans \(X \). Then \(K \) \((t_1 - t_0, \frac{1}{2}\delta)\)-spans \(F_n \) and also \((t_r - t_{r-1}, \frac{1}{2}\delta)\)-spans \(f^{t_r}(F_n) \). From the way the \(t_k \)'s and \(y_{ik} \)'s were chosen we see that, for \(0 < k < r - 1 \), \(E(y_{ik}) \) \((t_{k+1} - t_k, \frac{1}{2}\delta)\)-spans \(f^{t_k}(F_n) \). Lemma 2.1 applies to give

\[
r_n(F_n, \delta) \leq \left(\text{card } K \right)^2 \prod_{0 < k < r - 1} \text{card } E(y_{ik}) \leq \left(\text{card } K \right)^2 \exp \left(\left(a + \beta \right) \left(n(y_{ik}) \right) \right) \leq \left(\text{card } K \right)^2 e^{(a + \beta)n}.
\]

Corollary 2.3. If \(f \) is a homeomorphism, then \(h_{\text{homeo}}^*(e) = h_f^*(e) \).

Proof. Let \(a = h_{\text{homeo}}^*(e) \). Fixing \(\beta, \delta \) the proposition gives us \(r_n(\Phi_e(x), \delta) \leq ce^{(a + \beta)n} \). Hence \(r_f(\Phi_e(x), \delta) \leq a + \beta \) and \(h(f, \Phi_e(x)) \leq a + \beta \). As \(\beta > 0 \) was arbitrary, \(h(f, \Phi_e(x)) \leq a \) and \(h_f^*(e) \leq a = h_{\text{homeo}}^*(e) \). The reverse inequality we noted before.

Theorem 2.4. \(h(f) \leq h(f, e) + h_f^*(e) \). In particular, \(h(f) = h(f, e) \) if \(e \) is an \(h \)-expansive constant for \(f \).

Proof. Let \(\delta > 0 \) and \(\beta > 0 \). Let \(E_n(n, \epsilon) \)-span \(X \), i.e.

\[
X = \bigcup_{x \in X} \bigcap_{k=0}^{n-1} f^{-k}B_x(f^k(x)).
\]

By Proposition 2.2 there is a constant \(c \) so that each of the sets in the above union can be \((n, \delta)\)-spanned by using at most \(c e^{(a + \beta)n} \) elements (where \(a = h_f^*(e) \)). Hence \(r_n(X, \delta) \leq \text{card } E_n ce^{(a + \beta)n} \leq r_n(X, \epsilon) ce^{(a + \beta)n} \). It follows that \(h(f, \delta) \leq h(f, \epsilon) + a + \beta \). Letting \(\beta \to 0 \), \(h(f, \delta) \leq h(f, \epsilon) + a \). Now letting \(\delta \to 0 \) we get our result.

If \(h_f^*(e) = 0 \), then \(h(f) \leq h(f, e) \). But \(h(f) \geq h(f, e) \) from the definition of \(h(f) \); hence \(h(f) = h(f, e) \).

Corollary 2.5. If \(h(f) = h(f, e) + h_f^*(e) \), then \((1/n) \log r_n(X, \epsilon) \to h(f, e) \). In particular, if \(h_f^*(e) = 0 \), then \((1/n) \log r_n(f, e) \to h(f) \).

Proof. Otherwise there is an increasing sequence of integers \(\{ n_k \} \) so that \((1/n_k) \log r_{n_k}(X, \epsilon) \to b < h(f, e) \). Let \(a = h_f^*(e) \). Then \(h(f) > a + b \) and, for \(\gamma > 0 \)
small enough, \(h(f, \varphi) > a + b \). Choose \(\beta > 0 \) so that \(h(f, \varphi) > a + b + \beta \). For some \(c \), as in the proof of the theorem, we have \(r_{n_k}(X, \frac{1}{k}\varphi) \leq r_{n_k}(X, \epsilon)c \exp((a+\beta)n_k) \). So
\[
\limsup_{k \to \infty} \frac{1}{n_k} \log r_{n_k}(X, \frac{1}{k}\varphi) \leq b + a + \beta < h(f, \varphi).
\]
Choose \(R \) so that \((1/R) \log r_R(X, \frac{1}{k}\varphi) = \alpha < h(f, \varphi)\). This means there is an \((R, \frac{1}{k}\varphi)\)-spanning set for \(X \) with \(e^{R_\alpha} \) elements. By Lemma 2.1 (using \(t_k = kR \)) one gets \(r_{R_\alpha}(X, \varphi) \leq (e^{R_\alpha})^p \). For \(0 \leq q \leq R \),
\[
r_{R_\alpha + q}(X, \varphi) \leq r_{R_\alpha + 1}(X, \varphi) \leq e^{R_\alpha + 1} \leq e^{R_\alpha + 1}.
\]
Hence
\[
h(f, \varphi) = \limsup_{n \to \infty} \frac{1}{n} \log r_n(X, \varphi) \leq \limsup_{p \to \infty} \frac{(p + 1)R_\alpha}{Rp} = \alpha.
\]
But we chose \(\alpha < h(f, \varphi) \), a contradiction.

If \(\alpha^*(\epsilon) = 0 \), then \(h(f, \epsilon) \) by the theorem, and so the first statement applies.

REMARKS. For expansive homeomorphisms the second part of 2.4 was proved in [11] and the second part of 2.5 in [6]. In the original definition of topological entropy using open covers [1] certain limits existed whose analogues might not exist when one uses spanning sets. 2.5 is a technical result giving us conditions which insure that these limits exist. It has an application in counting periodic orbits of the Axiom A diffeomorphisms and flows of Smale (see [6]).

3. Measures. We continue to assume \(f: X \to X \) is continuous and \(X \) a compact metric space. \(\mu \) denotes a Borel measure on \(X \) with \(\mu(X) = 1 \) which is \(f \)-invariant, i.e. \(\mu(f^{-1}(E)) = \mu(E) \) for Borel sets \(E \).

We call \(A = \{A_1, \ldots, A_r\} \) a (finite) Borel partition provided the \(A_i \) are pairwise disjoint Borel sets whose union is \(X \). (Note that any finite \(\mu \)-measurable partition is \(\mu \)-equivalent to a Borel partition.) We write
\[
H_\mu(A) = \sum_{i=1}^{r} -\mu(A_i) \log \mu(A_i).
\]
If \(A, B \) are two Borel partitions, so is \(A \vee B = \{A \cap B : A \in A, B \in B\} \). Setting \(A^n = A \vee f^{-1}A \vee \cdots \vee f^{-(n-1)}A \), one defines the entropies (of Kolmogorov and Sinai, see [3])
\[
h_\mu(f, A) = \lim_{n \to \infty} \frac{1}{n} H_\mu(A^n) \quad \text{and} \quad h_\mu(f) = \sup_A h_\mu(f, A).
\]
An important device for calculating \(h_\mu(f) \) in some examples is Goodwyn's theorem [8]: \(h_\mu(f) \leq h(f) \). We shall use his ideas to prove a stronger statement for the case of \(X \) finite dimensional: \(h_\mu(f) \leq h_\mu(f, A) + h^*(\epsilon) \) where \(A \) is a finite Borel partition with \(\text{diam } A = \max \{\text{diam } A : A \in A\} \leq \epsilon \). This reduces to Goodwyn's theorem when we take \(A = \{X\} \) and \(\epsilon = \text{diam } X \). If \(\epsilon \) is an \(h \)-expansive constant for \(f \), it gives \(h_\mu(f) = h_\mu(f, A) \).
Lemma 3.1. If \(a_1, \ldots, a_n \geq 0 \) and \(s = \sum_{i=1}^{n} a_i \leq 1 \), then
\[
-\mu(a_i) \log \mu(a_i) \leq s(\log n - \log s).
\]

Proof. This is a well-known case of Jensen’s inequality [13, pp. 11–12].

Lemma 3.2. Let \(A_1, A_2, \ldots \) be finite Borel partitions of \(X \) with \(\text{diam } A_m \to 0 \). Then \(h_n(f, A_m) \to h_n(f) \).

Proof. This is a slight variation of a well-known result of Rohlin. Looking at 6.3, 8.6 and 9.5 of [16], one sees that our lemma is implied by the following statement:

Given a Borel partition \(\beta = \{B_1, \ldots, B_n\} \) and \(\epsilon > 0 \), then for large \(m \) we can find a partition \(\alpha = \{C_1, \ldots, C_n\} \) coarser than \(A_m \) (i.e. each \(C_i \) is the union of members of \(A_m \)) so that \(\mu(B_i \triangle C_i) < \epsilon \) for \(1 \leq i \leq n \).

We now prove this statement. Since \(\mu \) is a Borel measure, one can choose compact sets \(K_i \subset B_i \) with \(\mu(B_i \setminus K_i) < \epsilon/n \). Choose \(\delta > 0 \) so that \(d(K_i, K_j) > \delta \) for \(i \neq j \) and suppose \(\text{diam } A_m < \delta \). Form \(\alpha = \{C_1, \ldots, C_n\} \) coarser than \(A_m \) by putting \(A \in A \) into

(a) \(C_i \) if \(A \cap K_i \neq \emptyset \) or
(b) \(C_k \) if \(A \cap K_i = \emptyset \) for all \(i \).

This makes sense, for if \(x \in A \cap K_i \) and \(y \in A \cap K_j \), then
\[
d(K_i, K_j) \leq d(x, y) \leq \text{diam } A < \delta
\]
and so \(i = j \).

Clearly \(C_i \supset K_i \). Hence \(\mu(B_i \setminus C_i) \leq \mu(B_i \setminus K_i) < \epsilon/n \). Since \(C_i \setminus B_i \subset \bigcup_{j \neq i} (B_j \setminus C_j) \),
\[
\mu(C_i \setminus B_i) < (n-1)\epsilon/n.
\]
Thus \(\mu(B_i \triangle C_i) < \epsilon \).

Remark. We used 3.2 in [4] but stated there (in the introduction) instead a stronger form—which we cannot prove.

Suppose now that \(\mathcal{B} \) is any finite cover of \(X \). For \(E \subset X \) let
\[
F(E, \mathcal{B}) = \{ B \in \mathcal{B} : B \cap E \neq \emptyset \}.
\]

We give a very slight modification of Proposition 2 of [8].

Lemma 3.3. Let \(\mathcal{B} \) be a finite cover of \(X \) by closed sets such that each point \(x \in X \) lies in at most \(m \) elements of \(\mathcal{B} \). There is a \(\delta > 0 \) so that \(\text{card } F(E, \mathcal{B}^n) \leq r_n(\delta, E)m^n \) for all \(E \subset X, n \geq 0 \).

Proof. For each \(x \in X \) choose a neighborhood \(U_x \) intersecting at most \(m \) elements of \(\mathcal{B} \). Let \(U_{x_1}, \ldots, U_{x_{m}} \) cover \(X \) and \(\delta > 0 \) be a Lebesgue number for this open cover. For each \(n \) let \(K_n \) be a set which \((n, \delta) \)-spans \(E \) and has \(r_n(E, \delta) \) elements. For each \(\beta \in F(E, \mathcal{B}^n) \) pick \(p(\beta) \in E \cap \beta \) and \(q(\beta) \in K_n \) so that \(d(f^t(p(\beta)), f^t(q(\beta))) \leq \delta \) for \(0 \leq t \leq n \). If \(\beta = \bigcap_{i=1}^{m} B_i \), \(B_i \in \mathcal{B} \), then \(f^t(p(\beta)) \in B_i(f^t(q(\beta))) \cap B_i \neq \emptyset \). Since \(B_i(f^t(q(\beta))) \) lies inside some \(U_{x_i} \), for a given \(q(\beta) \) there are at most \(m \) possibilities for \(B_i \). It follows that, for \(z \in K_n \), card \(q^{-1}(z) \leq m^n \). Hence card \(F(E, \mathcal{B}^n) \leq (\text{card } K_n)m^n \).
DEFINITION. For A, B two Borel partitions let
\[b(A, B) = \max_{A \in A} \text{card } F(A, B). \]

Lemma 3.4.
\[h_{\mu}(f, A \vee B) \leq h_{\mu}(f, A) + \lim_{n \to \infty} \frac{1}{n} \log b(A^n, B^n). \]

Proof. Since $(A \vee B^n) = A^n \vee B^n$,
\[H_{\mu}((A \vee B)^n) = \sum_{\alpha \in A^n} \sum_{\beta \in F(\alpha, B^n)} -\mu(\alpha \cap \beta) \log \mu(\alpha \cap \beta). \]
By Lemma 3.1
\[\sum_{\beta \in F(\alpha, B^n)} -\mu(\alpha \cap \beta) \log \mu(\alpha \cap \beta) \leq \mu(\alpha) \log b(\alpha, B^n) - \log \mu(\alpha) \]
and so
\[H_{\mu}((A \vee B)^n) \leq \log b(A^n, B^n) + H_{\mu}(A^n). \]
Divide by n and let $n \to \infty$.

Theorem 3.5. Assume X is finite dimensional. Let A be a Borel partition of X with diam $A \leq \varepsilon$. Then $h_{\mu}(f) = h_{\mu}(f, A) + h_{\mu}^f(\varepsilon)$ for any normalized f-invariant Borel measure μ. If e is an h-expansive constant for f, then $h_{\mu}(f) = h_{\mu}(f, A)$.

Proof. Say dim $X = m - 1$. Then for each $\gamma > 0$ we can find a finite closed cover $\mathfrak{B} = \mathfrak{B}(\gamma)$ with diameter $< \gamma$ and no point of X in more than m elements of \mathfrak{B} (see [10]). Let M be a fixed positive integer.

Let $B = \{B_1^\gamma, \ldots, B_s^\gamma\}$ be a Borel partition of B where $B_i^\gamma \subset B_i$ and $\mathfrak{B} = \{B_1, \ldots, B_s\}$. We consider f^M with respect to the partition $B \vee A_1^\psi$. If $\alpha \in (A_1^\psi)^{\mathfrak{B}}$ and $x \in \alpha$, then $\alpha \subset \bigcap_{n=0}^{M-1} f^{-n} B_1(f^n(x))$. Let $\delta > 0$ be as in Lemma 3.3 and $\beta > 0$ arbitrary. By 2.2 we have
\[r_n(\alpha, \delta, f^M) \leq r_{Mn}(\alpha, \delta, f) \leq c \varepsilon (\alpha + \beta)n^M \]
where $a = h_{\mu}^f(\varepsilon)$. Using Lemma 3.3 we get (the first inequality is obvious)
\[\text{card } F(\alpha, B_i^\gamma) \leq \text{card } F(\alpha, B_i) \leq c \varepsilon (\alpha + \beta)n^M \]
Applying Lemma 3.4,
\[h(f^M, B \vee A_i^\gamma) \leq h(f^M, A_i^\gamma) + M(\alpha + \beta) + \log m. \]
Letting $\gamma \to 0$, diam $B \vee A_i^\psi$ \leq diam B \leq diam $\mathfrak{B}(\gamma) \to 0$ and so by Lemma 3.2
\[h_{\mu}(f^M) \leq h_{\mu}(f^M, A_i^\gamma) + M(\alpha + \beta) + \log m. \]
Now $h_{\mu}(f^M) = Mh_{\mu}(f)$ and $h_{\mu}(f^M, A_i^\gamma) = Mh_{\mu}(f, A)$. So
\[h_{\mu}(f) \leq h_{\mu}(f, A) + a + \beta + \frac{1}{M} \log m. \]
Letting $\beta \to 0$ and then $M \to \infty$, we get our result.
REFERENCES

Department of Mathematics, University of California, Berkeley, California 94720