Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Two point boundary value problems for nonlinear functional differential equations


Authors: Paul Waltman and James S. W. Wong
Journal: Trans. Amer. Math. Soc. 164 (1972), 39-54
MSC: Primary 34.75
DOI: https://doi.org/10.1090/S0002-9947-1972-0287126-8
MathSciNet review: 0287126
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the existence of solutions of two point boundary value problems for functional differential equations. Specifically, we consider

$\displaystyle y'(t) = L(t,{y_t}) + f(t,{y_t}),\quad M{y_a} + N{y_b} = \psi ,$

where M and N are linear operators on $ C[0,h]$. Growth conditions are imposed on f to obtain the existence of solutions. This result is then specialized to the case where $ L(t,{y_t}) = A(t)y(t)$, that is, when the reduced linear equation is an ordinary rather than a functional differential equation. Several examples are discussed to illustrate the results.

References [Enhancements On Off] (What's this?)

  • [1] K. L. Cooke, Some recent work on functional-differential equations, Proc. U.S.-Japan Seminar on Differential and Functional Equations (Minneapolis, Minn., 1967), Benjamin, New York, 1967, pp. 27-47. MR 36 #5462. MR 0222410 (36:5462)
  • [2] R. D. Driver, Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal. 10 (1962), 401-426. MR 25 #5260. MR 0141863 (25:5260)
  • [3] W. Dubrovskiĭ, Sur certaines équations intégrales nonlinéaires, Uč. Zap. Moskov. Gos. Univ. Mat. 30 (1939), 49-60.
  • [4] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. MR 13, 373. MR 0044116 (13:373c)
  • [5] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [6] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965. MR 36 #4308. MR 0221256 (36:4308)
  • [7] R. E. Fennell, Periodic solutions of functional differential equations, J. Math. Anal. Appl. (to appear). MR 0308553 (46:7667)
  • [8] R. Fennell and P. Waltman, A boundary value problem for a system of nonlinear functional differential equations, J. Math. Anal. Appl. 26 (1969), 447-453. MR 38 #6185. MR 0237908 (38:6185)
  • [9] A. Granas, The theory of compact vector fields and some of its applications to topology and functional spaces. I, Rozprawy Mat. 30 (1962), 93 pp. MR 26 #6743. MR 0149253 (26:6743)
  • [10] A. Halanay, Differential equations: Stability, oscillations, time lags, Academic Press, New York, 1966. MR 35 #6938. MR 0216103 (35:6938)
  • [11] J. K. Hale, Functional differential equations, Lectures, University of California, Los Angeles, 1968-1969.
  • [12] D. Henry, The adjoint linear functional equation and boundary value problems, J. Differential Equations 9 (1971), 55-66. MR 0274901 (43:659)
  • [13] J. Kato, Asymptotic behaviors in functional differential equations, Tôhoku Math. J. (2) 18 (1966), 174-215. MR 34 #6263. MR 0206444 (34:6263)
  • [14] M. Z. Nashed and J. S. W. Wong, Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations, J. Math. Mech. 18 (1969), 767-777. MR 38 #6416. MR 0238140 (38:6416)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.75

Retrieve articles in all journals with MSC: 34.75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0287126-8
Keywords: Functional differential equations, boundary value problems, periodic solutions, shooting methods, Fredholm alternative
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society