Reflection principle for systems of first order elliptic equations with analytic coefficients

Author:
Chung Ling Yu

Journal:
Trans. Amer. Math. Soc. **164** (1972), 489-501

MSC:
Primary 30A92

DOI:
https://doi.org/10.1090/S0002-9947-1972-0293110-0

MathSciNet review:
0293110

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *T* be a simply connected domain of the plane, whose boundary contains a portion of the *x*-axis. Also let and be holomorphic functions for , with for for . Furthermore, we assume that and are real valued functions for . Our reflection principle states that for any solution of an equation of the type in *T* under the boundary condition on can be continued analytically across the *x*-axis, onto the entire mirror image .

**[1]**L. Bers,*Theory of pseudo-analytic functions*, Institute for Mathematics and Mechanics, New York University, New York, 1953. MR**15**, 211. MR**0057347 (15:211c)****[2]**J. H. Bramble,*Continuation of biharmonic functions across circular arcs*, J. Math. Mech.**7**(1958), 905-924. MR**20**#6614. MR**0100180 (20:6614)****[3]**R. D. Brown,*Reflection laws of fourth order elliptic differential equations in two independent variables*, J. Math. Mech.**13**(1964), 365-383. MR**29**#2526. MR**0165237 (29:2526)****[4]**R. J. Duffin,*Continuation of biharmonic functions by reflection*, Duke Math. J.**22**(1955), 313-324. MR**18**, 29. MR**0079105 (18:29e)****[5]**P. R. Garabedian,*Analyticity and reflection for plane elliptic systems*, Comm. Pure Appl. Math.**14**(1961), 315-322. MR**25**#309. MR**0136848 (25:309)****[6]**A. Huber,*On the reflection principle for polyharmonic functions*, Comm. Pure Appl. Math.**9**(1956), 471-478. MR**19**, 26. MR**0085355 (19:26e)****[7]**R. Kraft,*Reflection of polyharmonic functions in two independent variables*, J. Math. Anal. Appl.**19**(1967), 505-518. MR**35**#4458. MR**0213600 (35:4458)****[8]**-,*Analyticity and reflectivity for first order systems of elliptic type in two independent variables*, J. Math. Anal. Appl.**29**(1970), 1-17. MR**0271532 (42:6415)****[9]**H. Lewy,*On the reflection laws of second order differential equations in two independent variables*, Bull. Amer. Math. Soc.**65**(1959), 37-58. MR**21**#2810. MR**0104048 (21:2810)****[10]**N. I. Mushelišvili,*Singular integral equations. Boundary problems of function theory and their application to mathematical physics*, OGIZ, Moscow, 1946; English transl., Noordhoff, Groningen, 1953. MR**8**, 586; MR**15**, 434.**[11]**H. Poritsky,*On reflection of singularities of harmonic functions corresponding to the boundary condition*, Bull. Amer. Math. Soc.**43**(1937), 873-884. MR**1563652****[12]**J. M. Sloss,*Reflection of biharmonic functions across analytic boundary conditions with examples*, Pacific J. Math.**13**(1963), 1401-1415. MR**28**#350. MR**0157110 (28:350)****[13]**-,*Reflection laws of high order elliptic differential equations in two independent variables with constant coefficients and unequal characteristics across analytic boundary conditions*, Duke Math. J.**35**(1968), 415-434. MR**37**#4402. MR**0228823 (37:4402)****[14]**I. N. Vekua,*Generalized analytic functions*, Fizmatgiz, Moscow, 1959; English transl., Pergamon Press, London; Addison-Wesley, Reading, Mass., 1962. MR**21**#7288; MR**27**#321. MR**0150320 (27:321)****[15]**-,*New methods for solving elliptic equations*, OGIZ, Moscow, 1948; English transl., Series in Appl. Math., vol. 1, North-Holland, Amsterdam; Interscience, New York, 1967. MR**11**, 598; MR**35**#3243. MR**0034503 (11:598a)****[16]**C. L. Yu,*Reflection principle for solutions of higher order elliptic equations with analytic coefficients*, SIAM J. Appl. Math.**20**(1971), 358-363. MR**0289929 (44:7114)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30A92

Retrieve articles in all journals with MSC: 30A92

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1972-0293110-0

Keywords:
Reflection principle,
first order elliptic equation,
pseudo-analytic functions,
Cauchy-Riemann equations

Article copyright:
© Copyright 1972
American Mathematical Society