Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Reflection principle for systems of first order elliptic equations with analytic coefficients


Author: Chung Ling Yu
Journal: Trans. Amer. Math. Soc. 164 (1972), 489-501
MSC: Primary 30A92
DOI: https://doi.org/10.1090/S0002-9947-1972-0293110-0
MathSciNet review: 0293110
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let T be a simply connected domain of the $ z = x + iy$ plane, whose boundary contains a portion $ \sigma $ of the x-axis. Also let $ A(z,\zeta ),B(z,\zeta ),F(z,\zeta ),\alpha (z),\beta (z)$ and $ \rho (z)$ be holomorphic functions for $ z,\zeta \in T \cup \sigma \cup \bar T$, with $ \alpha (z) - i\beta (z) \ne 0$ for $ z \in \bar T \cup \sigma ,\alpha (z) + i\beta (z) \ne 0$ for $ z \in T \cup \sigma $. Furthermore, we assume that $ \alpha (x)$ and $ \beta (x)$ are real valued functions for $ x \in \sigma $. Our reflection principle states that for any solution $ w = u + iv$ of an equation of the type $ \partial w/\partial \bar z = A(z,\bar z)w + B(z,\bar z)\bar w + F(z,\bar z)$ in T under the boundary condition $ \alpha (x)u + \beta (x)v = \rho (x)$ on $ \sigma ,w$ can be continued analytically across the x-axis, onto the entire mirror image $ \bar T$.


References [Enhancements On Off] (What's this?)

  • [1] L. Bers, Theory of pseudo-analytic functions, Institute for Mathematics and Mechanics, New York University, New York, 1953. MR 15, 211. MR 0057347 (15:211c)
  • [2] J. H. Bramble, Continuation of biharmonic functions across circular arcs, J. Math. Mech. 7 (1958), 905-924. MR 20 #6614. MR 0100180 (20:6614)
  • [3] R. D. Brown, Reflection laws of fourth order elliptic differential equations in two independent variables, J. Math. Mech. 13 (1964), 365-383. MR 29 #2526. MR 0165237 (29:2526)
  • [4] R. J. Duffin, Continuation of biharmonic functions by reflection, Duke Math. J. 22 (1955), 313-324. MR 18, 29. MR 0079105 (18:29e)
  • [5] P. R. Garabedian, Analyticity and reflection for plane elliptic systems, Comm. Pure Appl. Math. 14 (1961), 315-322. MR 25 #309. MR 0136848 (25:309)
  • [6] A. Huber, On the reflection principle for polyharmonic functions, Comm. Pure Appl. Math. 9 (1956), 471-478. MR 19, 26. MR 0085355 (19:26e)
  • [7] R. Kraft, Reflection of polyharmonic functions in two independent variables, J. Math. Anal. Appl. 19 (1967), 505-518. MR 35 #4458. MR 0213600 (35:4458)
  • [8] -, Analyticity and reflectivity for first order systems of elliptic type in two independent variables, J. Math. Anal. Appl. 29 (1970), 1-17. MR 0271532 (42:6415)
  • [9] H. Lewy, On the reflection laws of second order differential equations in two independent variables, Bull. Amer. Math. Soc. 65 (1959), 37-58. MR 21 #2810. MR 0104048 (21:2810)
  • [10] N. I. Mushelišvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, OGIZ, Moscow, 1946; English transl., Noordhoff, Groningen, 1953. MR 8, 586; MR 15, 434.
  • [11] H. Poritsky, On reflection of singularities of harmonic functions corresponding to the boundary condition $ \alpha u/\alpha n + au = 0$, Bull. Amer. Math. Soc. 43 (1937), 873-884. MR 1563652
  • [12] J. M. Sloss, Reflection of biharmonic functions across analytic boundary conditions with examples, Pacific J. Math. 13 (1963), 1401-1415. MR 28 #350. MR 0157110 (28:350)
  • [13] -, Reflection laws of high order elliptic differential equations in two independent variables with constant coefficients and unequal characteristics across analytic boundary conditions, Duke Math. J. 35 (1968), 415-434. MR 37 #4402. MR 0228823 (37:4402)
  • [14] I. N. Vekua, Generalized analytic functions, Fizmatgiz, Moscow, 1959; English transl., Pergamon Press, London; Addison-Wesley, Reading, Mass., 1962. MR 21 #7288; MR 27 #321. MR 0150320 (27:321)
  • [15] -, New methods for solving elliptic equations, OGIZ, Moscow, 1948; English transl., Series in Appl. Math., vol. 1, North-Holland, Amsterdam; Interscience, New York, 1967. MR 11, 598; MR 35 #3243. MR 0034503 (11:598a)
  • [16] C. L. Yu, Reflection principle for solutions of higher order elliptic equations with analytic coefficients, SIAM J. Appl. Math. 20 (1971), 358-363. MR 0289929 (44:7114)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A92

Retrieve articles in all journals with MSC: 30A92


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0293110-0
Keywords: Reflection principle, first order elliptic equation, pseudo-analytic functions, Cauchy-Riemann equations
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society