Relative imaginary quadratic fields of class number or

Author:
Larry Joel Goldstein

Journal:
Trans. Amer. Math. Soc. **165** (1972), 353-364

MSC:
Primary 12A25

MathSciNet review:
0291124

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *K* be a normal totally real algebraic number field. It is shown how to effectively classify all totally imaginary quadratic extensions of class number 1. Let *K* be a real quadratic field of class number 1, whose fundamental unit has norm . Then it is shown how to effectively classify all totally imaginary quadratic extensions of class number 2.

**[1]**A. Baker,*Imaginary quadratic fields with class number 2*, Ann. of Math. (2)**94**(1971), 139–152. MR**0299583****[2]**Yoshiomi Furuta,*The genus field and genus number in algebraic number fields*, Nagoya Math. J.**29**(1967), 281–285. MR**0209260****[3]**Larry Joel Goldstein,*A generalization of Stark’s theorem*, J. Number Theory**3**(1971), 323–346. MR**0289456****[4]**Larry Joel Goldstein,*Imaginary quadratic fields of class number 2*, J. Number Theory**4**(1972), 286–301. MR**0299587****[5]**H. Heilbronn and E. H. Linfoot,*On the imaginary quadratic corpora of class number one*, Quart. J. Math. Oxford Ser.**5**(1934), 293-301.**[6]**H. M. Stark,*A complete determination of the complex quadratic fields of class-number one*, Michigan Math. J.**14**(1967), 1–27. MR**0222050****[7]**A. Baker,*Imaginary quadratic fields with class number 2*, Ann. of Math. (2)**94**(1971), 139–152. MR**0299583****[8]**Judith E. Sunley,*On the class numbers of totally imaginary quadratic extensions of totally real fields*, Bull. Amer. Math. Soc.**78**(1972), 74–76. MR**0291127**, 10.1090/S0002-9904-1972-12859-3**[9]**Tikao Tatuzawa,*On a theorem of Siegel*, Jap. J. Math.**21**(1951), 163–178 (1952). MR**0051262**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
12A25

Retrieve articles in all journals with MSC: 12A25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1972-0291124-8

Keywords:
Number field,
class number,
quadratic field

Article copyright:
© Copyright 1972
American Mathematical Society