Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Relative imaginary quadratic fields of class number $ 1$ or $ 2$


Author: Larry Joel Goldstein
Journal: Trans. Amer. Math. Soc. 165 (1972), 353-364
MSC: Primary 12A25
DOI: https://doi.org/10.1090/S0002-9947-1972-0291124-8
MathSciNet review: 0291124
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let K be a normal totally real algebraic number field. It is shown how to effectively classify all totally imaginary quadratic extensions of class number 1. Let K be a real quadratic field of class number 1, whose fundamental unit has norm $ - 1$. Then it is shown how to effectively classify all totally imaginary quadratic extensions of class number 2.


References [Enhancements On Off] (What's this?)

  • [1] A. Baker, Imaginary quadratic fields of class number 2, Ann. of Math. (2) 94 (1971), 139-152. MR 0299583 (45:8631)
  • [2] Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281-285. MR 35 #162. MR 0209260 (35:162)
  • [3] L. Goldstein, A generalization of Stark's theorem, J. Number Theory 3 (1971), 323-346. MR 0289456 (44:6646)
  • [4] -, Imaginary quadratic fields of class number 2, J. Number Theory (to appear). MR 0299587 (45:8635)
  • [5] H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. Oxford Ser. 5 (1934), 293-301.
  • [6] H. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27. MR 36 #5102. MR 0222050 (36:5102)
  • [7] -, Imaginary quadratic fields of class number 2, Ann. of Math. (2) 94 (1971), 153-174. MR 0299583 (45:8631)
  • [8] J. Sunley, On class numbers of totally imaginary quadratic extensions of totally real fields Thesis, University of Maryland, College Park, Md., 1971. MR 0291127 (45:221)
  • [9] T. Tatuzawa, On a theorem of Siegel, Japan. J. Math. 21 (1951), 163-178. MR 14, 452. MR 0051262 (14:452c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12A25

Retrieve articles in all journals with MSC: 12A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0291124-8
Keywords: Number field, class number, quadratic field
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society