Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The $ (\phi\sp{2n})\sb{2}$ field Hamiltonian for complex coupling constant


Authors: Lon Rosen and Barry Simon
Journal: Trans. Amer. Math. Soc. 165 (1972), 365-379
MSC: Primary 81.47
DOI: https://doi.org/10.1090/S0002-9947-1972-0292436-4
Erratum: Trans. Amer. Math. Soc. 172 (1972), 508.
MathSciNet review: 0292436
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider hamiltonians $ {H_\beta } = {H_0} + \beta {H_I}(g)$, where $ {H_0}$ is the hamiltonian of a free Bose field $ \phi (x)$ of mass $ m > 0$ in two-dimensional space-time, $ {H_I}(g) = \smallint g(x):P(\phi (x)):dx$ where $ g \geqq 0$ is a spatial cutoff and P is an arbitrary polynomial which is bounded below, and the coupling constant $ \beta $ is in the cut plane, i.e. $ \beta \ne $ negative real. We show that $ {H_\beta }$ generates a semigroup with hypercontractive properties and satisfies higher order estimates of the form $ \left\Vert {{H_0}{N^r}R_\beta ^s} \right\Vert < \infty $, where N is the number operator, $ {R_\beta } = {({H_\beta } + b)^{ - 1}}$, r a positive integer, and $ \beta $, s, and b are suitably chosen. For any $ 0 \leqq \Theta < \pi $, $ {R_\beta }$ converges in norm to $ {R_0}$ as $ \vert\beta \vert \to 0$ with $ \vert\arg \beta \vert \leqq \Theta $. Finally we discuss applications of these results and establish asymptotic series and Borel summability for various objects in the real $ \beta $ theory.


References [Enhancements On Off] (What's this?)

  • [1] J. Glimm and A. Jaffe, A $ \lambda {\phi ^4}$ quantum field theory without cutoffs. I, Phys. Rev. (2) 176 (1968), 1945-1951. MR 40 #1106. MR 0247845 (40:1106)
  • [2] -, Field theory models, Les Houches Lectures, Gordon and Breach, New York, 1971.
  • [3] G. Hardy, Divergent series, Clarendon Press, Oxford, 1949. MR 11, 25. MR 0030620 (11:25a)
  • [4] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [5] J. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan 14 (1962), 233-241. MR 27 #2850. MR 0152878 (27:2850)
  • [6] A. McIntosh, On the comparability of $ {A^{1/2}}$ and $ {({A^ \ast })^{1/2}}$, MacQuarie University, Sydney, Australia (preprint).
  • [7] E. Nelson, A quartic interaction in two dimensions, Math. Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966. MR 35 #1309. MR 0210416 (35:1309)
  • [8] L. Rosen, A $ \lambda {\phi ^{2n}}$ field theory without cutoffs, Comm. Math. Phys. 16 (1970), 157-183. MR 0270671 (42:5559)
  • [9] -, The $ {({\phi ^{2n}})_2}$ quantum field theory: higher order estimates, Comm. Pure Appl. Math. 24 (1971), 417-457. MR 0287840 (44:5042)
  • [10] I. Segal, Construction of non-linear local quantum processes. I, Ann. of Math. (2)92 (1970), 463-481. MR 0272306 (42:7187)
  • [11] B. Simon, Borel summability of the ground-state energy in spatially cutoff $ {({\phi ^4})_2}$, Phys. Rev. Lett. 25 (1970), 1583-1586. MR 0395601 (52:16395)
  • [12] -, Coupling constant analyticity for the anharmonic oscillator, Ann. Physics 58 (1970), 76-136. MR 0416322 (54:4397)
  • [13] B. Simon and R. Høegh-Krohn, Hypercontractive semigroups and two dimensional self-coupled Bose fields, J. Functional Analysis (to appear). MR 0293451 (45:2528)
  • [14] E. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J., 1970. MR 0252961 (40:6176)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 81.47

Retrieve articles in all journals with MSC: 81.47


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0292436-4
Keywords: Boson fields, polynomial interaction, hamiltonian, vacuum expectation values, coupling constant analyticity, asymptotic series, Borel summability
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society