Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ L\,\sb{p}$ derivatives and approximate Peano derivatives


Author: Michael J. Evans
Journal: Trans. Amer. Math. Soc. 165 (1972), 381-388
MSC: Primary 26A24
DOI: https://doi.org/10.1090/S0002-9947-1972-0293030-1
MathSciNet review: 0293030
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that approximate derivatives and kth Peano derivatives share several interesting properties with ordinary derivatives. In this paper the author points out that kth $ {L_p}$ derivatives also share these properties. Furthermore, a definition for a kth approximate Peano derivative is given which generalizes the notions of a kth Peano derivative, a kth $ {L_p}$ derivative, and an approximate derivative. It is then shown that a kth approximate Peano derivative at least shares the property of belonging to Baire class one with these other derivatives.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Ash, Generalizations of the Riemann derivative, Trans. Amer. Math. Soc. 126 (1967), 181-199. MR 34 #4422. MR 0204583 (34:4422)
  • [2] A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. MR 25 #310. MR 0136849 (25:310)
  • [3] J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53 (1947), 124-125. MR 8, 451. MR 0019712 (8:451e)
  • [4] A. Denjoy, Sur l'intégration des coefficients différentiels d'order supérieur, Fund. Math. 25 (1935), 273-326.
  • [5] -, Sur une propriété des fonctions dérivées exactes, Enseignement Math. 18 (1916), 320-328.
  • [6] C. Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960), 962-966. MR 22 #9562. MR 0118792 (22:9562)
  • [7] A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math. 9 (1927), 217-279.
  • [8] J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and the summability of trigonometric series, Fund. Math. 26 (1936), 38-69.
  • [9] S. Marcus, On a theorem of Denjoy and on approximate derivative, Monatsh. Math. 66 (1962), 435-440. MR 27 #1543. MR 0151558 (27:1543)
  • [10] C. J. Neugebauer, Smoothness and differentiability in $ {L_p}$, Studia Math. 25 (1964/65), 81-91. MR 31 #5942. MR 0181715 (31:5942)
  • [11] H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456. MR 15, 944. MR 0062207 (15:944d)
  • [12] G. Tolstoff, Sur la dérivée approximative exacte, Mat. Sb. 4 (1938), 499-504.
  • [13] C. E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376. MR 31 #283. MR 0176007 (31:283)
  • [14] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. MR 12, 247. MR 0037338 (12:247c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A24

Retrieve articles in all journals with MSC: 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0293030-1
Keywords: Peano derivatives, $ {L_p}$ derivatives, approximate derivatives, approximate Peano derivatives, Baire class one, Darboux property, Denjoy property, Zahorski property
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society