Weighted norm inequalities for the Hardy maximal function

Author:
Benjamin Muckenhoupt

Journal:
Trans. Amer. Math. Soc. **165** (1972), 207-226

MSC:
Primary 46E30; Secondary 26A86, 42A40

MathSciNet review:
0293384

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The principal problem considered is the determination of all nonnegative functions, , for which there is a constant, *C*, such that

*J*is a fixed interval,

*C*is independent of

*f*, and is the Hardy maximal function,

*I*is any subinterval of

*J*, denotes the length of

*I*and

*K*is a constant independent of

*I*.

Various related problems are also considered. These include weak type results, the problem when there are different weight functions on the two sides of the inequality, the case when or , a weighted definition of the maximal function, and the result in higher dimensions. Applications of the results to mean summability of Fourier and Gegenbauer series are also given.

**[1]**C. Fefferman and E. M. Stein,*Some maximal inequalities*, Amer. J. Math.**93**(1971), 107–115. MR**0284802****[2]**Frank Forelli,*The Marcel Riesz theorem on conjugate functions*, Trans. Amer. Math. Soc.**106**(1963), 369–390. MR**0147827**, 10.1090/S0002-9947-1963-0147827-3**[3]**G. H. Hardy and J. E. Littlewood,*A maximal theorem with function-theoretic applications*, Acta Math.**54**(1930), no. 1, 81–116. MR**1555303**, 10.1007/BF02547518**[4]**Henry Helson and Gabor Szegö,*A problem in prediction theory*, Ann. Mat. Pura Appl. (4)**51**(1960), 107–138. MR**0121608****[5]**Benjamin Muckenhoupt,*Poisson integrals for Hermite and Laguerre expansions*, Trans. Amer. Math. Soc.**139**(1969), 231–242. MR**0249917**, 10.1090/S0002-9947-1969-0249917-9**[6]**Benjamin Muckenhoupt,*Hermite conjugate expansions*, Trans. Amer. Math. Soc.**139**(1969), 243–260. MR**0249918**, 10.1090/S0002-9947-1969-0249918-0**[7]**Benjamin Muckenhoupt,*Mean convergence of Hermite and Laguerre series. I, II*, Trans. Amer. Math. Soc. 147 (1970), 419-431; ibid.**147**(1970), 433–460. MR**0256051**, 10.1090/S0002-9947-1970-99933-9**[8]**B. Muckenhoupt and E. M. Stein,*Classical expansions and their relation to conjugate harmonic functions*, Trans. Amer. Math. Soc.**118**(1965), 17–92. MR**0199636**, 10.1090/S0002-9947-1965-0199636-9**[9]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[10]**-,*On certain operators on**spaces*, Doctoral Dissertation, University of Chicago, Chicago, Ill., 1955.**[11]**G. N. Watson,*Notes on generating functions of polynomials*. III:*Polynomials of Legendre and Gegenbauer*, J. London Math. Soc.**8**(1933), 289-292.**[12]**A. Zygmund,*Trigonometric series: Vols. I, II*, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. MR**0236587**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46E30,
26A86,
42A40

Retrieve articles in all journals with MSC: 46E30, 26A86, 42A40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1972-0293384-6

Keywords:
Hardy maximal function,
mean summability,
Fourier series,
Gegenbauer series,
weighted norm inequalities

Article copyright:
© Copyright 1972
American Mathematical Society