Weighted norm inequalities for the Hardy maximal function
Author:
Benjamin Muckenhoupt
Journal:
Trans. Amer. Math. Soc. 165 (1972), 207226
MSC:
Primary 46E30; Secondary 26A86, 42A40
MathSciNet review:
0293384
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The principal problem considered is the determination of all nonnegative functions, , for which there is a constant, C, such that where , J is a fixed interval, C is independent of f, and is the Hardy maximal function, The main result is that is such a function if and only if where I is any subinterval of J, denotes the length of I and K is a constant independent of I. Various related problems are also considered. These include weak type results, the problem when there are different weight functions on the two sides of the inequality, the case when or , a weighted definition of the maximal function, and the result in higher dimensions. Applications of the results to mean summability of Fourier and Gegenbauer series are also given.
 [1]
C.
Fefferman and E.
M. Stein, Some maximal inequalities, Amer. J. Math.
93 (1971), 107–115. MR 0284802
(44 #2026)
 [2]
Frank
Forelli, The Marcel Riesz theorem on conjugate
functions, Trans. Amer. Math. Soc. 106 (1963), 369–390. MR 0147827
(26 #5340), http://dx.doi.org/10.1090/S00029947196301478273
 [3]
G.
H. Hardy and J.
E. Littlewood, A maximal theorem with functiontheoretic
applications, Acta Math. 54 (1930), no. 1,
81–116. MR
1555303, http://dx.doi.org/10.1007/BF02547518
 [4]
Henry
Helson and Gabor
Szegö, A problem in prediction theory, Ann. Mat. Pura
Appl. (4) 51 (1960), 107–138. MR 0121608
(22 #12343)
 [5]
Benjamin
Muckenhoupt, Poisson integrals for Hermite and
Laguerre expansions, Trans. Amer. Math.
Soc. 139 (1969),
231–242. MR 0249917
(40 #3158), http://dx.doi.org/10.1090/S00029947196902499179
 [6]
Benjamin
Muckenhoupt, Hermite conjugate expansions,
Trans. Amer. Math. Soc. 139 (1969), 243–260. MR 0249918
(40 #3159), http://dx.doi.org/10.1090/S00029947196902499180
 [7]
Benjamin
Muckenhoupt, Mean convergence of Hermite and Laguerre series. I,
II, Trans. Amer. Math. Soc. 147 (1970), 419431; ibid.
147 (1970), 433–460. MR 0256051
(41 #711)
 [8]
B.
Muckenhoupt and E.
M. Stein, Classical expansions and their
relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92. MR 0199636
(33 #7779), http://dx.doi.org/10.1090/S00029947196501996369
 [9]
Elias
M. Stein, Singular integrals and differentiability properties of
functions, Princeton Mathematical Series, No. 30, Princeton University
Press, Princeton, N.J., 1970. MR 0290095
(44 #7280)
 [10]
, On certain operators on spaces, Doctoral Dissertation, University of Chicago, Chicago, Ill., 1955.
 [11]
G. N. Watson, Notes on generating functions of polynomials. III: Polynomials of Legendre and Gegenbauer, J. London Math. Soc. 8 (1933), 289292.
 [12]
A.
Zygmund, Trigonometric series: Vols. I, II, Second edition,
reprinted with corrections and some additions, Cambridge University Press,
LondonNew York, 1968. MR 0236587
(38 #4882)
 [1]
 C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107115. MR 0284802 (44:2026)
 [2]
 F. Forelli, The Marcel Riesz theorem on conjugate functions, Trans. Amer. Math. Soc. 106 (1963), 369390. MR 26 #5340. MR 0147827 (26:5340)
 [3]
 G. H. Hardy and J. E. Littlewood, A maximal theorem with functiontheoretic applications, Acta Math. 54 (1930), 81116. MR 1555303
 [4]
 H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. (4) 51 (1960), 107138. MR 22 #12343. MR 0121608 (22:12343)
 [5]
 B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231242. MR 40 #3158. MR 0249917 (40:3158)
 [6]
 , Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243260. MR 40 #3159. MR 0249918 (40:3159)
 [7]
 , Mean convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc. 147 (1970), 433460. MR 41 #711. MR 0256051 (41:711)
 [8]
 B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 1792. MR 33 #7779. MR 0199636 (33:7779)
 [9]
 E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
 [10]
 , On certain operators on spaces, Doctoral Dissertation, University of Chicago, Chicago, Ill., 1955.
 [11]
 G. N. Watson, Notes on generating functions of polynomials. III: Polynomials of Legendre and Gegenbauer, J. London Math. Soc. 8 (1933), 289292.
 [12]
 A. Zygmund, Trigonometric series. Vols. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0236587 (38:4882)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46E30,
26A86,
42A40
Retrieve articles in all journals
with MSC:
46E30,
26A86,
42A40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197202933846
PII:
S 00029947(1972)02933846
Keywords:
Hardy maximal function,
mean summability,
Fourier series,
Gegenbauer series,
weighted norm inequalities
Article copyright:
© Copyright 1972
American Mathematical Society
