Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The oscillation of an operator


Author: Robert Whitley
Journal: Trans. Amer. Math. Soc. 165 (1972), 65-73
MSC: Primary 47A99; Secondary 40J05
DOI: https://doi.org/10.1090/S0002-9947-1972-0295105-X
Erratum: Trans. Amer. Math. Soc. 172 (1972), 507.
MathSciNet review: 0295105
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Foiaş and Singer introduced the oscillation of a bounded linear operator mapping $ C(S)$ into a Banach space. Using this concept we define a generalization of the Fredholm operators T with $ \mathcal{K}(T) < \infty $ and a corresponding perturbation class which contains the weakly compact operators. We show that a bounded linear operator on c is a conservative summability matrix which sums every bounded sequence if and only if it has zero oscillation at infinity.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Théorie des opérations linéaires, Chelsea, New York, 1955. MR 17, 175.
  • [2] E. Cheney and K. Price, Minimal projections, Approximation Theory, Academic Press, New York, 1970, pp. 261-289. MR 42 #751. MR 0265842 (42:751)
  • [3] I. Daugavet, A property of completely continuous operators in the space C, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 157-158. (Russian) MR 28 #461. MR 0157225 (28:461)
  • [4] M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 21, Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.
  • [5] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [6] C. Foiaş and I. Singer, Points of diffusion of linear operators and almost diffuse operators in spaces of continuous functions, Math. Z. 87 (1965), 434-450. MR 31 #5093. MR 0180863 (31:5093)
  • [7] S. Goldberg, Unbounded linear operators: Theory and application, McGraw-Hill, New York, 1966. MR 34 #580. MR 0200692 (34:580)
  • [8] R. Herman, Generalizations of weakly compact operators, Trans. Amer. Math. Soc. 132 (1968), 377-386. MR 36 #6976. MR 0223929 (36:6976)
  • [9] M. Krasnosel'skiĭ, A class of operators in a space of abstract continuous functions, Mat. Zametki 2 (1967), 599-604. MR 36 #5733. MR 0222683 (36:5733)
  • [10] E. Lacey and R. Whitley, Conditions under which all the bounded linear maps are compact, Math. Ann. 158 (1965), 1-5. MR 30 #3373. MR 0173159 (30:3373)
  • [11] A. Pełczyński, On simultaneous extension of continuous functions. A generalization of theorems of Rudin-Carieson and Bishop, Studia Math. 24 (1964), 285-304. MR 30 #5184a. MR 0174996 (30:5184a)
  • [12] -, Some linear topological properties of separable function algebras, Proc. Amer. Math. Soc. 18 (1967), 652-660. MR 35 #4737. MR 0213883 (35:4737)
  • [13] -, On strictly singular and strictly cosingular operators. I: Strictly singular and strictly cosingular operators in $ C(S)$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31-36. MR 31 #1563. MR 0177300 (31:1563)
  • [14] E. Thorp and R. Whitley, Operator representation theorems, Illinois J. Math. 9 (1965), 595-601. MR 31 #6126. MR 0181900 (31:6126)
  • [15] A. Wilansky, Functional analysis, Blaisdell, New York, 1964. MR 30 #425. MR 0170186 (30:425)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A99, 40J05

Retrieve articles in all journals with MSC: 47A99, 40J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0295105-X
Keywords: Bounded linear operator on $ C(S)$, oscillation of an operator, Fredholm operator, ramming operator, weakly compact operator, strictly singular operator, $ {\varphi _ + }$ operator, conservative summability method, coercive summability method
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society