Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A generalized Weyl equidistribution theorem for operators, with applications

Authors: J. R. Blum and V. J. Mizel
Journal: Trans. Amer. Math. Soc. 165 (1972), 291-307
MSC: Primary 47A35; Secondary 28A65
MathSciNet review: 0328633
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper is motivated by the observation that Weyl's equidistribution theorem for real sequences on a bounded interval can be formulated in a way which is also meaningful for sequences of selfadjoint operators on a Hilbert space.

We shall provide general results on weak convergence of operator measures which yield this version of Weyl's theorem as a corollary. Further, by combining the above results with the von Neumann ergodic theorem, we will obtain a Cesàro convergence property, equivalently, an ``ergodic theorem", which is valid for all (projection-valued) spectral measures whose support is in a bounded interval, as well as for the more general class of positive operator-valued measures. Within the same circle of ideas we deduce a convergence property which completely characterizes those spectral measures associated with ``strongly mixing'' unitary transformations. The final sections are devoted to applications of the preceding results in the study of complex-valued Borel measures as well as to an extension of our results to summability methods other than Cesàro convergence. In particular, we obtain a complete characterization, in purely measure theoretic terms, of those complex measures on a bounded interval whose Fourier-Stieltjes coefficients converge to zero.

References [Enhancements On Off] (What's this?)

  • [1] N. I. Ahiezer and I. M. Glazmann, The theory of linear operators in Hilbert space, GITTL, Moscow, 1950; German transl., Akademie-Verlag, Berlin, 1954; English transl., Ungar, New York, 1961. MR 13, 358; MR 16, 596. MR 0044034 (13:358b)
  • [2] A. D. Aleksandrov, Additive set functions in abstract spaces, Mat. Sb. 8 (50) (1940), 307-348; ibid. 9 (51) (1941), 563-628; ibid. 13 (55) (1943), 169-238. MR 2, 315; MR 3, 207; MR 6, 275.
  • [3] J. Dieudonné, Sur le théorème de Lebesgue-Nikodym. IV, J. Indian Math. Soc. (N. S.) 15 (1951), 77-86. MR 13, 447. MR 0044610 (13:447j)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [5] A. Ionescu-Tulcea and C. Ionescu-Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzegebiete, Band 48, Springer-Verlag, New York, 1969. MR 0276438 (43:2185)
  • [6] J. V. Neumann, Algebraische Repräsentanten der Funktionen ``bis auf eine Menge vom Masse Null,'' J. Reine Angew. Math. 161 (1931), 109-115.
  • [7] M. A. Naĭmark, On a representation of additive operator set functions, C. R. (Dokl.) Acad. Sci. URSS 41 (1943), 359-361. MR 6, 71. MR 0010789 (6:71c)
  • [8] J. Neveau, Bases mathématiques du calcul des probabilités, Masson, Paris, 1964; English transl., Holden-Day, San Francisco, Calif., 1965. MR 33 #6659; MR 33 #6660.
  • [9] K. R. Parthasarathy, Probability measures on metric spaces, Probability and Math. Statist., no. 3, Academic Press, New York, 1967. MR 37 #2271. MR 0226684 (37:2271)
  • [10] A. Rajchman, Une classe de séries trigonométriques qui convergent presque partout vers zéro, Math. Ann. 101 (1929), 686-700. MR 1512561
  • [11] F. Riesz and B. Sz-Nagy, Leçons d'analyse fonctionnelle, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., Ungar, New York, 1955. MR 15, 132; MR 17, 175. MR 0056821 (15:132d)
  • [12] F. Topsøe, Topology and measure, Lecture Notes in Math., vol. 133, Springer-Verlag, New York, 1970. MR 0422560 (54:10546)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A35, 28A65

Retrieve articles in all journals with MSC: 47A35, 28A65

Additional Information

Keywords: Weak convergence of operator measures, ergodic theorem for spectral measures, convergence methods, generalized Riemann-Lebesgue Lemma
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society