A unified approach to uniform real approximation by polynomials with linear restrictions
Author:
Bruce L. Chalmers
Journal:
Trans. Amer. Math. Soc. 166 (1972), 309316
MSC:
Primary 41A50
MathSciNet review:
0294962
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Problems concerning approximation of realvalued continuous functions of a real variable by polynomials of degree smaller than n with various linear restrictions have been studied by several authors. This paper is an attempt to provide a unified approach to these problems. In particular, the notion of restricted derivatives approximation is seen to fit into the theory and includes as special cases the notions of monotone approximation and restricted range approximation. Also bounded coefficients approximation, interpolator approximation, and polynomial approximation with interpolation fit into our scheme.
 [1]
K.
Atkinson and A.
Sharma, A partial characterization of poised HermiteBirkhoff
interpolation problems, SIAM J. Numer. Anal. 6
(1969), 230–235. MR 0264828
(41 #9419)
 [2]
Charles
B. Dunham, Chebyshev aproximation with respect to a weight
function, J. Approximation Theory 2 (1969),
223–232. MR 0252922
(40 #6137)
 [3]
David
Ferguson, The question of uniqueness for G. D. Birkhoff
interpolation problems., J. Approximation Theory 2
(1969), 1–28. MR 0247331
(40 #599)
 [4]
M. A. Griesel, Uniform approximation with respect to a general error function, Doctoral Dissertation, University of California, Riverside, Calif., 1971.
 [5]
H.
L. Loeb, D.
G. Moursund, L.
L. Schumaker, and G.
D. Taylor, Uniform generalized weight function polynomial
approximation with interpolation, SIAM J. Numer. Anal.
6 (1969), 284–293. MR 0250441
(40 #3679)
 [6]
G.
G. Lorentz and K.
L. Zeller, Monotone approximation by algebraic
polynomials, Trans. Amer. Math. Soc. 149 (1970), 1–18. MR 0285843
(44 #3060), http://dx.doi.org/10.1090/S00029947197002858435
 [7]
R. A. Lorentz, Uniqueness of approximation by monotone polynomials (to appear).
 [8]
David
G. Moursund, Chebyshev approximation using a generalized weight
function, SIAM J. Numer. Anal. 3 (1966),
435–450. MR 0204936
(34 #4771)
 [9]
T.
J. Rivlin and H.
S. Shapiro, A unified approach to certain problems of approximation
and minimization, J. Soc. Indust. Appl. Math. 9
(1961), 670–699. MR 0133636
(24 #A3462)
 [10]
John
A. Roulier, Monotone approximation of certain classes of
functions, J. Approximation Theory 1 (1968),
319–324. MR 0236580
(38 #4875)
 [11]
John
A. Roulier and G.
D. Taylor, Uniform approximation by polynomials having bounded
coefficients, Abh. Math. Sem. Univ. Hamburg 36
(1971), 126–135. Collection of articles dedicated to Lothar Collatz
on his sixtieth birthday. MR 0336177
(49 #953)
 [12]
I.
J. Schoenberg, On HermiteBirkhoff interpolation, J. Math.
Anal. Appl. 16 (1966), 538–543. MR 0203307
(34 #3160)
 [13]
O.
Shisha, Monotone approximation, Pacific J. Math.
15 (1965), 667–671. MR 0185334
(32 #2802)
 [14]
G.
D. Taylor, On approximation by polynomials having restricted
ranges, SIAM J. Numer. Anal. 5 (1968), 258–268.
MR
0252927 (40 #6142)
 [15]
G.
D. Taylor, Approximation by functions having restricted ranges.
III, J. Math. Anal. Appl. 27 (1969), 241–248.
MR
0257611 (41 #2261)
 [1]
 K. Atkinson and A. Sharma, A partial characterization of poised HermiteBirkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230235. MR 41 #9419. MR 0264828 (41:9419)
 [2]
 C. B. Dunham, Chebyshev approximation with respect to a weight function, J. Approximation Theory 2 (1969), 223232. MR 40 #6137. MR 0252922 (40:6137)
 [3]
 David Ferguson, The question of uniqueness for G. D. Birkhoff interpolation problems, J. Approximation Theory 2 (1969), 128. MR 40 #599. MR 0247331 (40:599)
 [4]
 M. A. Griesel, Uniform approximation with respect to a general error function, Doctoral Dissertation, University of California, Riverside, Calif., 1971.
 [5]
 H. L. Loeb, D. G. Moursund, L. L. Schumaker and G. D. Taylor, Uniform generalized weight function polynomial approximation with interpolation, SIAM J. Numer. Anal. 6 (1969), 284293. MR 40 #3679. MR 0250441 (40:3679)
 [6]
 G. G. Lorentz and K. L. Zeller, Monotone approximation by algebraic polynomials, Trans. Amer. Math. Soc. 149 (1970), 118. MR 0285843 (44:3060)
 [7]
 R. A. Lorentz, Uniqueness of approximation by monotone polynomials (to appear).
 [8]
 D. G. Moursund, Chebyshev approximation using a generalized weight function, SIAM J. Numer. Anal. 3 (1966), 435450. MR 34 #4771. MR 0204936 (34:4771)
 [9]
 T. J. Rivlin and H. S. Shapiro, A unified approach to certain problems of approximation and minimization, SIAM J. Numer. Anal. 9 (1961), 670699. MR 24 #A3462. MR 0133636 (24:A3462)
 [10]
 J. A. Roulier, Monotone approximation of certain classes of continuous functions, J. Approximation Theory 1 (1968), 319324. MR 38 #4875. MR 0236580 (38:4875)
 [11]
 J. A. Roulier and G. D. Taylor, Uniform approximation by polynomials having bounded coefficients, Abh. Math. Sem. Univ. Hamburg 36 (1971), 126135. MR 0336177 (49:953)
 [12]
 I. J. Schoenberg, On HermiteBirkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538543. MR 34 #3160. MR 0203307 (34:3160)
 [13]
 O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667671. MR 32 #2802. MR 0185334 (32:2802)
 [14]
 G. D. Taylor, On approximation by polynomials having restricted ranges, SIAM J. Numer. Anal. 5 (1968), 258268. MR 40 #6142. MR 0252927 (40:6142)
 [15]
 , Approximation by functions having restricted ranges. III, J. Math. Anal. Appl. 27 (1969), 241248. MR 41 #2261. MR 0257611 (41:2261)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
41A50
Retrieve articles in all journals
with MSC:
41A50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197202949620
PII:
S 00029947(1972)02949620
Keywords:
Approximation with linear restrictions,
polynomials of best approximation,
extremal sets,
uniqueness of best approximation,
generalized Haar condition
Article copyright:
© Copyright 1972
American Mathematical Society
