Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A general class of factors of $ E^4$


Author: Leonard R. Rubin
Journal: Trans. Amer. Math. Soc. 166 (1972), 215-224
MSC: Primary 57A15
DOI: https://doi.org/10.1090/S0002-9947-1972-0295314-X
Erratum: Trans. Amer. Math. Soc. 177 (1973), 505.
MathSciNet review: 0295314
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that any upper semicontinuous decomposition of $ E^n$ which is generated by a trivial defining sequence of cubes with handles determines a factor of $ E^{n + 1}$. An important corollary to this result is that every 0-dimensional point-like decomposition of $ E^3$ determines a factor of $ E^4$. In our approach we have simplified the construction of the sequence of shrinking homeomorphisms by eliminating the necessity of shrinking sets piecewise in a collection of n-cells, the technique employed by R. H. Bing in the original result of this type.


References [Enhancements On Off] (What's this?)

  • [1] W. R. Alford and R. B. Sher, Defining sequences for compact 0-dimensional decompositions of $ {E^n}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 209-212. MR 40 #8031. MR 0254824 (40:8031)
  • [2] J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math. (2) 75 (1962), 1-7. MR 25 #2590. MR 0139153 (25:2590)
  • [3] J. J. Andrews and Leonard Rubin, Some spaces whose product with $ {E^1}$ is $ {E^4}$, Bull. Amer. Math. Soc. 71 (1965), 675-677. MR 31 #726. MR 0176454 (31:726)
  • [4] R. H. Bing, A decomposition of $ {E^3}$ into points and tame arcs such that the decomposition space is topologically different from $ {E^3}$, Ann. of Math. (2) 65 (1957), 484-500. MR 19, 1187. MR 0092961 (19:1187g)
  • [5] -, The cartesian product of a certain nonmanifold and a line is $ {E^4}$, Ann. of Math. (2) 70 (1959), 399-412. MR 21 #5953. MR 0107228 (21:5953)
  • [6] -, Point-like decompositions of $ {E^3}$, Fund. Math. 50 (1961/62), 431-453. MR 25 #560. MR 0137104 (25:560)
  • [7] J. L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), 43-51. MR 37 #5861. MR 0230298 (37:5861)
  • [8] -, Euclidean n-space modulo an $ (n - 1)$-cell (to appear).
  • [9] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [10] R. C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717-731. MR 40 #4941. MR 0251714 (40:4941)
  • [11] H. W. Lambert and R. B. Sher, Point-like 0-dimensional decompositions of $ {S^3}$, Pacific J. Math. 24 (1968), 511-518. MR 37 #902. MR 0225308 (37:902)
  • [12] D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327-337. MR 28 #4528. MR 0161320 (28:4528)
  • [13] R. H. Rosen, $ {E^4}$ is the Cartesian product of a totally non-euclidean space and $ {E^1}$, Ann. of Math. (2) 73 (1961), 349-361. MR 23 #A2198. MR 0124888 (23:A2198)
  • [14] L. R. Rubin, The product of an unusual decomposition space with a line is $ {E^4}$, Duke Math. J. 33 (1966), 323-329. MR 33 #3283. MR 0195078 (33:3283)
  • [15] -, The product of any dogbone space with a line is $ {E^4}$, Duke Math. J. 37 (1970), 189-192. MR 0267548 (42:2450)
  • [16] -, Recognizing certain factors of $ {E^4}$, Proc. Amer. Math. Soc. 26 (1970), 199-200. MR 42 #1088. MR 0266180 (42:1088)
  • [17] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A15

Retrieve articles in all journals with MSC: 57A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0295314-X
Keywords: Cubes with handles, defining sequence, trivial defining sequence, universal covering space, 0-dimensional decomposition, point-like decomposition, cell-like spaces, property UV$ ^\infty$
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society