SLICING THEOREMS FOR n-SPHERES IN EUCLIDEAN (n+1)-SPACE

BY

ROBERT J. DAVERMAN(*)

Abstract. This paper describes conditions on the intersection of an n-sphere Σ in Euclidean (n+1)-space \(E^{n+1} \) with the horizontal hyperplanes of \(E^{n+1} \) sufficient to determine that the sphere be nicely embedded. The results generally are pointed towards showing that the complement of Σ is 1-ULC (uniformly locally 1-connected) rather than towards establishing the stronger property that Σ is locally flat. For instance, the main theorem indicates that \(E^{n+1} - \Sigma \) is 1-ULC provided each non-degenerate intersection of Σ and a horizontal hyperplane be an \((n-1) \)-sphere bicollared both in that hyperplane and in Σ itself \((n \neq 4) \).

1. Introduction. Much of the literature that treats the problem of determining properties of the embedding of an object \(\Sigma \) in \(E^n \) from information about the intersection of \(\Sigma \) with the horizontal hyperplanes of \(E^n \) focuses on the case \(n = 3 \). Such a problem first arose in this dimension when J. W. Alexander [1] suggested that a 2-sphere in \(E^3 \) might be embedded just as a round sphere if each of its intersections with the horizontal planes were either a point or a simple closed curve. Recently Eaton [11] and Hosay [12] showed this to be true. After generalizations by Love-land [15] and Jensen [13], Cannon proved that the same property is held by any 2-sphere \(\Sigma \) in \(E^3 \) such that no intersection of \(\Sigma \) with a horizontal plane has a degenerate component [7].

For higher dimensions Bryant has proved that a \(k \)-dimensional compact set \(X \) in \(E^n \), where \(n - k \geq 3 \), has a 1-ULC complement if the complement of \(X \) with respect to each member of some dense subset of the horizontal hyperplanes of \(E^n \) is 1-ULC [5].

The main results of this paper are found in §5, where it is shown that a closed \(n \)-manifold \(\Sigma \) topologically embedded in \(E^{n+1} \) \((n \neq 4) \) is nice (meaning, \(E^{n+1} - \Sigma \) is 1-ULC) if each nondegenerate intersection \(\Sigma_i \) of \(\Sigma \) and a horizontal, \(n \)-dimensional hyperplane in \(E^{n+1} \) is a PL \((n-1) \)-manifold bicollared in that hyperplane and nice in \(\Sigma \) \((\Sigma - \Sigma_i \text{ is 1-ULC}) \). Most of the techniques required are consigned to §4. In §6 other generalizations to the results mentioned in the first paragraph are given, the methods for which are taken from [7] and [12]. In addition, we describe

Received by the editors March 15, 1971.

* AMS 1970 subject classifications. Primary 57A45, 57A50; Secondary 57A15.

* Key words and phrases. Horizontal hyperplane of Euclidean space, bicollared submanifold, locally flat submanifold, locally simply connected, homeomorphic approximation, topological embedding.

* Research was supported in part by NSF Grant GP-19966.

Copyright © 1972, American Mathematical Society

479
in §3 some methods, similar to but weaker than those of the three-dimensional case (see [3]), for improving mappings of a disk into the closure of a complementary domain of an \(n \)-manifold in an \((n + 1)\)-manifold.

2. Definitions and notation. An \(n \)-manifold is a separable metric space which is locally homeomorphic to \(\mathbb{E}^n \); thus, the term manifold is reserved for manifolds without boundary. For simplicity we shall assume all manifolds to be connected, but they need not be compact or triangulated. A manifold that is compact (and without boundary) is said to be closed.

A subset \(S \) of a metric space is called an \(\varepsilon \)-subset if and only if the diameter of \(S \), written \(\text{diam} \ S \), is less than \(\varepsilon \).

Suppose \(f \) and \(g \) are maps of a space \(X \) into a space \(Y \) that has a metric \(\rho \). The symbol \(\rho(f, g) < \varepsilon \) means that \(\rho(f(x), g(x)) < \varepsilon \) for each \(x \) in \(X \). The maps \(f \) and \(g \) are said to be \(\varepsilon \)-homotopic (\(\varepsilon \)-isotopic) if and only if there exists a homotopy (isotopy) \(h_t \) sending \(X \) into \(Y \) such that \(h_0 = f, h_1 = g \) and \(\rho(h_s, h_t) < \varepsilon \) for all \(s, t \) in \([0, 1]\).

A map \(f \) of the metric space \(Y \) into a subset \(A \) is an \(\varepsilon \)-map if and only if \(\rho(y, f(y)) < \varepsilon \) for each \(y \in Y \).

The symbol \(\Delta^2 \) denotes a 2-simplex fixed throughout this paper and \(\partial \Delta^2 \) denotes its boundary. Given a triangulation \(R \) of \(\Delta^2 \), we use \(R^i \) to denote the \(i \)-skeleton of \(R \) (\(i = 0, 1 \)).

For any point \(p \) in a metric space \(S \) and any positive number \(\delta \), \(N_\delta(p) \) denotes the set of points in \(S \) whose distance from \(p \) is less than \(\delta \).

Let \(A \) denote a subset of a metric space \(X \) and \(p \) a limit point of \(A \). We say that \(A \) is locally simply connected at \(p \), written \(1-\text{LC} \) at \(p \), if and only if for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that each map of \(\partial \Delta^2 \) into \(A \cap N_\delta(p) \) can be extended to a map of \(\Delta^2 \) into \(A \cap N_\varepsilon(p) \). Furthermore, we say that \(A \) is uniformly locally simply connected, written \(1-\text{ULC} \), if for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that each map of \(\partial \Delta^2 \) into a \(\delta \)-subset of \(A \) can be extended to a map of \(\Delta^2 \) into an \(\varepsilon \)-subset of \(A \).

In the same context we say that \(A \) is locally arcwise connected at \(p \), or \(0-\text{LC} \) at \(p \), if and only if for each \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that any map of \(\partial I \) (where \(I = [0, 1] \)) into \(A \cap N_\delta(p) \) extends to a map of \(I \) into \(A \cap N_\varepsilon(p) \). We define analogously the uniform condition \(0-\text{ULC} \).

For a subset \(U \) of a space \(S \) we use the symbol \(\text{Cl} \ U \) to denote the closure of \(U \) and \(\text{Bd} \ U \) to denote the (topological) boundary of \(U \) in \(S \).

Let \(\Sigma \) be an \(n \)-manifold embedded in the interior of an \((n + 1)\)-manifold \(M \) as a closed subset, and let \(U \) be an open subset of \(M - \Sigma \). Then \(\Sigma \) is collared from \(U \) if and only if there exists a homeomorphism \(g \) of \(\Sigma \times \{0\} \) into \(\text{Cl} \ U \) such that \(g(s, 0) = s \) for each \(s \) in \(\Sigma \). Similarly, \(\Sigma \) is bicollared in \(M \) if and only if there exists a homeomorphism \(h \) of \(\Sigma \times [-1, 1] \) into \(M \) such that \(h(s, 0) = s \) for each \(s \) in \(\Sigma \). In addition, \(\Sigma \) is locally flat in \(M \) if and only if each point \(s \) of \(\Sigma \) has a neighborhood \(N \) (relative to \(M \)) such that \(N \cap \Sigma \) is bicollared in \(N \).
Let n be a positive integer. For each real number t define E_t, the hyperplane of E^{n+1} at the t-level, as $\{x_1, \ldots, x_{n+1} \in E^{n+1} \mid x_{n+1} = t\}$. For any subset Σ of E^{n+1} we define $E \Sigma$ as $E \cap E_t$, and for any set C of real numbers we define $E(C)$ as $\bigcup \{E_t \mid t \in C\}$; however, for an interval (a, b) we simplify $E((a, b))$ to $E(a, b)$.

3. Altering maps of a disk.

Lemma 3.1. Suppose Σ is an n-manifold embedded in the interior of an $(n + 1)$-manifold M as a closed separating subset, U a component of $M - \Sigma$, X a closed subset of Σ such that $\text{Cl} \: U - X$ is 1-LC at each point of X, R a triangulation of Δ^2, T a subdivision of R, and F a map of Δ^2 into $\text{Cl} \: U$ such that $F([R^{(1)}]) \subseteq U$.

Then for each $\varepsilon > 0$ there exists a map G of Δ^2 into $\text{Cl} \: U$ such that

- (a) $G \mid \partial \Delta^2 = F \mid \partial \Delta^2$,
- (b) $\rho(F, G) < \varepsilon$,
- (c) $G([T^{(1)}]) \subseteq U$,
- (d) $G(\Delta^2) \cap X = \emptyset$.

Proof. Note that, since $F(\Delta^2)$ is compact, there exist a neighborhood V of $F(\Delta^2)$ (relative to $\text{Cl} \: U$) and a positive number δ such that any map of $\partial \Delta^2$ into a δ-subset of $V - X$ can be extended so as to send Δ^2 into an $(\varepsilon/3)$-subset of $\text{Cl} \: U - X$.

Now we simply modify F, beginning with the 0-skeleton of T and working up. In case $v \in T^{(0)}$ and $F(v) \in \Sigma$, define $G(v)$ as a point of $U \cap V$ very close to $F(v)$; when $F(v) \notin \Sigma$, define $G(v) = F(v)$. Since U is 0-LC at each point of Σ [*17, Theorem II.5.35*], then, for each 1-simplex σ of T, G can be extended along σ in such a way that $G(\sigma) \subseteq U \cap V$ and $\rho(G|\sigma, F|\sigma) < \varepsilon/3$; in case $\sigma \subseteq [R^{(1)}]$, define $G|\sigma = F|\sigma$. Because first we could have subdivided T (if necessary), we can assume that, for each 2-simplex τ of T, $\text{Diam} \: F(\tau) < \varepsilon/3$ and $\text{Diam} \: G(\partial \tau) < \delta$. According to the previous paragraph, G can be extended over τ into an $\varepsilon/3$-subset of $\text{Cl} \: U - X$. It follows easily that $\rho(F, G) < \varepsilon$.

Theorem 3.2. Suppose Σ is an n-manifold embedded in the interior of an $(n + 1)$-manifold M as a closed separating subset, U a component of $M - \Sigma$, and f a map of Δ^2 into $\text{Cl} \: U$ with $f(\partial \Delta^2) \subseteq U$. Suppose $\{X^i\}$ is a countable collection of closed subsets of Σ such that $\text{Cl} \: U - X^i$ is 1-LC at each point of X^i ($i = 1, 2, \ldots$). Then for each $\varepsilon > 0$ there exists a map g of Δ^2 into $\text{Cl} \: U$ such that

- (1) $g|\partial \Delta^2 = f|\partial \Delta^2$,
- (2) $\rho(f, g) < \varepsilon$,
- (3) $g^{-1}(\Sigma \cap g(\Delta^2))$ is 0-dimensional,
- (4) $g(\Delta^2) \cap X^i = \emptyset$ for $i = 1, 2, \ldots$.

The proof follows from routine applications of Lemma 3.1.

This result yields the following corollary, which can be regarded as a very weak version of [*3, Theorem 4.2*].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Corollary 3.3. Suppose \(\Sigma \) is an \(n \)-manifold embedded in the interior of an \((n + 1) \)-manifold \(M \) as a closed separating subset, \(U \) a component of \(M - \Sigma \), and \(f \) a map of \(\Delta^2 \) into \(\text{Cl} U \) such that \(f(\partial \Delta^2) \subseteq U \). Then for each \(\varepsilon > 0 \) there exists a map \(g \) of \(\Delta^2 \) into \(\text{Cl} U \) such that (i) \(g|\partial \Delta^2 = f|\partial \Delta^2 \), (ii) \(\rho(f, g) < \varepsilon \), and (iii) \(g^{-1}(\Sigma \cap g(\Delta^2)) \) is 0-dimensional.

4. Embedding Cartesian products in \(E^{n+1} \). Let \(n \) denote a fixed positive integer. Obviously there exists a countable collection \(\mathcal{M} \) of closed, PL \((n-1) \)-manifolds such that any closed, PL \((n-1) \)-manifold is homeomorphic to some member of \(\mathcal{M} \). (In fact, this holds even without the PL hypothesis \([8]\).)

In this section \(\Sigma \) will denote an \(n \)-manifold embedded in \(E^{n+1} \) as a closed subset, \(U \) a component of \(E^{n+1} - U \), and \((a, b) \) an interval of real numbers such that, for each \(t \in (a, b) \), \(\Sigma_t \) is homeomorphic to some member of \(\mathcal{M} \) and is collared from \(U_t \). Let \((a, b)_M \) be the set of all \(t \) in \((a, b) \) such that \(\Sigma_t \) is homeomorphic to \(M \), where \(M \in \mathcal{M} \). For each such \(M \) and each \(t \in (a, b)_M \) define an embedding of \(M \times [-1, 1] \) into \(\text{Cl} U_t \) such that \(\lambda_t(M \times \{-1\}) = \Sigma_t \). Topologize the set \(\{\Sigma_t | t \in (a, b)_M\} \) by the sup-norm metric in \(E^{n+1} \), producing a separable metric space.

As suggested by Bryant \([4]\) (and in the unpublished work of Bing \([2]\)), one can easily establish the following lemma.

Lemma 4.1. There exists a countable subset \(\mathcal{D} \) of \((a, b) \) such that to each \(t \) in \((a, b) - \mathcal{D} \) there correspond two sequences \(\{s(i)\} \) and \(\{u(i)\} \) of real numbers, with \(a < s(i) < t < u(i) < b \), such that each of the associated sequences \(\{\lambda_{s(i)}\} \) and \(\{\lambda_{u(i)}\} \) converges (homeomorphically) to \(\lambda_t \).

Throughout the rest of §§4 and 5, \(\mathcal{D} \) will denote the subset of \((a, b) \) described in Lemma 4.1, and \(n \) will denote a fixed integer other than 4.

The following result can be established by adding simple epsilonics to the proof of Borsuk's theorem (see \([10, \text{Theorem 10.2}]\)).

Lemma 4.2. Let \(A \) be an ANR embedded as a closed subset of a metric space \(X \), \(\varepsilon > 0 \), and \(f: X \to A \) an \(\varepsilon \)-map such that \(f|A \) is \(\varepsilon \)-homotopic (in \(A \)) to the identity map. Then there exists a 2\(\varepsilon \)-retraction of \(X \) onto \(A \).

Lemma 4.3. A. If \(t \in (a, b)_M - \mathcal{D} \), then there exists a homeomorphism \(h \) of \(M \times [-1, 1] \) onto a subset \(A_t \) of \(\text{Cl} U \) such that

\[
\Sigma \cap A_t = h(M \times \{-1\}) \cup h(M \times \{1\}) = \Sigma_s \cup \Sigma_u,
\]

where \(a < s < t < u < b \) and \(A_t \cap E_z = \emptyset \) for \(z \) not in \([s, u]\).

B. For any such \(A_t \), let \(X_t \) denote the closure of the component of \(\text{Cl} U - A_t \) containing \(\Sigma_t \). Then, for each \(\varepsilon > 0 \), \(A_t \) can be obtained so that there exists an \(\varepsilon \)-retraction of \(X_t \) onto \(A_t \).

Proof. Fix a point \(t \) of \((a, b)_M - \mathcal{D} \). By restricting \([-1, 1]\) to a subinterval containing \(-1\), if necessary, we may assume that \(\text{diam} \lambda_t([p] \times [-1, 1]) \) is less than...
e/18 for each p in M. Since λ(M × {0}) is an ANR, the obvious retraction of λ(M × [-1, 1]) onto λ(M × {0}) can be extended over a neighborhood N of λ(M × [-1, 1]) to an e/18-retraction R of N onto λ(M × {0}). Furthermore, N can be chosen as a product N' × (s', u') ⊂ E^n × E^1 where N' is a bounded open subset of E^n and N ∩ Σ = Σ(s', u').

It is sufficient to describe the homeomorphism h of M × [-1, 1] onto some (as yet undefined) A_t subject to the following conditions:

1. X_t ⊂ N,
2. diam h((p) × [-1, 1]) < e/6 for each p in M,
3. h(p, 0) = λ_t(p, 0) for each p in M.

Let g denote the map of A_t to h(M × {0}) sending each h((p) × [-1, 1]) to h(p, 0).

The product structure on A_t will provide the natural guide for defining an e/6-homotopy G_s: A_t → A_t between g and the identity map. Note that condition (2) above and the definition of R imply that

\[\text{diam } RH((p) × [-1, 1]) < e/3\]

for each p in M. Thus, RG_s will be an e/3-homotopy between Rg = g and R. This means that R|A_t will be e/2-homotopic in A_t to the identity map, and part B of this lemma will be a consequence of Lemma 4.2.

Let δ_t denote the distance from λ_t(M × {0}) to Σ ∩ (E^{n+1} − N). It follows from [18] (see also [16, Lemma 5]) in case n > 4 and from [14, Lemma 4] or [9, Theorem 8.2] in case n = 3 that there exists a δ > 0 such that any locally flat n-manifold in \(E_t \) homeomorphically within \(d_t \) of \(\Sigma_t \) is \(\delta \)-isotopic to \(\Sigma_t \) in \(E_t \). According to Lemma 4.1 there exist real numbers s and u, with \(s' < s < t < u < u' \), such that \(λ_s \) and \(λ_u \) are homeomorphically within \(d_t \) of \(λ_t \). If \(p_t \) denotes the map projecting \(E^n × \{t\} \) onto \(E^n × \{t\} \), then \(p_t λ_s(M × \{0\}) \) and \(p_t λ_u(M × \{0\}) \) are each \(δ \)-isotopic to \(λ_t(M × \{0\}) \) in \(E_t \). By lifting this isotopy through the levels \(E_s \) (\(s ≤ r ≤ u \)), we construct an embedding h of \(M × [-\frac{1}{2}, \frac{1}{2}] \) into \(U ∩ N \) such that condition (3), as well as the following conditions, holds:

4. \(h(M × \{-\frac{1}{2}\}) = λ_s(M × \{0\}) \),
5. \(h(M × \{\frac{1}{2}\}) = λ_u(M × \{0\}) \),
6. for each \(w ∈ [-\frac{1}{2}, \frac{1}{2}] \), there exists a distinct \(z ∈ [s, u] \) such that \(h(M × \{w\}) ⊂ E_z \).
7. \(\text{diam } h((p) × [-\frac{1}{2}, \frac{1}{2}]) < e/18 \) for each p in M.

Since both \(λ_s \) and \(λ_u \) are homeomorphically close to \(λ_t \), we may assume s and u were chosen so that

8. \(\text{diam } λ_s((p) × [-1, 0]) < e/18 \) for each p in M,
9. \(\text{diam } λ_u((p) × [-1, 0]) < e/18 \) for each p in M.

Now \(h(M × [-\frac{1}{2}, \frac{1}{2}] \) can be extended to a homeomorphism h of \(M × [-1, 1] \) onto

\[A_t = λ_s(M × [-1, 0]) ∪ h(M × [-\frac{1}{2}, \frac{1}{2}]) ∪ λ_u(M × [-1, 0]).\]
To verify that \(X_t \subset N \), observe that \(N \) has connected boundary, as does \(X_t \) (where \(\text{Bd} \ X_t \) is taken in \(E^{n+1} \), not in \(\text{Cl} U \)). Since \(\text{Bd} \ X_t \subset N \) by construction and since both \(X_t \) and \(N \) are bounded, \(X_t \) must be a subset of \(N \). The only unverified requirement on the construction, condition (2), follows easily from (7)–(9).

Addendum. Suppose \(\varepsilon > 0 \), \(X_t \) and \(A_t \) satisfy the conclusions of Lemma 4.3B, and \(Z \) is a compact subset of \(X_t \). Then there exists an \(\varepsilon \)-map of \(Z \) into \(A_t \) such that \(f(Z) \cap \text{Bd} A_t \subset Z \) and \(f|_{Z \cap A_t} = \text{identity} \).

Proof. Follow the \(\varepsilon \)-retraction of \(X_t \) onto \(A_t \) by a small homeomorphism \(g \) of \(A_t \) into \((Z \cap \text{Bd} A_t) \cup \text{Int} A_t \) such that \(g|Z \cap A_t = \text{identity} \).

5. **Submanifolds of** \(E^{n+1} \)** whose levels are twice bicollared. The basic result in this section is the following application of Lemma 4.3.

Theorem 5.1. Let \(\Sigma \) denote an \(n \)-manifold embedded in \(E^{n+1} \) (\(n \neq 4 \)) as a closed subset, \(U \) a component of \(E^{n+1} - \Sigma \), and \((a, b) \) an interval such that for each \(t \in (a, b) \) (i) \(\Sigma_t \) is a closed, PL \((n - 1) \)-manifold that is collared from \(U_t \) and (ii) \(\text{Cl} U - \Sigma_t \) is 1-LC at each point of \(\Sigma_t \). Then \(U \) is 1-LC at each point of \(\Sigma(a, b) \).

Proof. Suppose \(f: \Delta^2 \to \text{Cl} U \) is a map such that \(f(\partial \Delta^2) \subset U \) and \(f(\Delta^2) \cap \Sigma \subset \Sigma(a, b) \). Let \(\varepsilon \) be a positive number less than both \(\rho(f(\Delta^2), \Sigma_a \cup \Sigma_b) \) and \(\rho(f(\partial \Delta^2), \Sigma) \), and let \(D \) denote the countable subset of \((a, b) \) described in Lemma 4.1. Then by Theorem 3.2 there exists a map \(f_0: \Delta^2 \to \text{Cl} U \) such that

1. \(f_0|\partial \Delta^2 = f|\partial \Delta^2 \),
2. \(\rho(f, f_0) < \varepsilon/3 \),
3. \(f_0(\Delta^2) \cap \Sigma_d = \emptyset \) for each \(d \) in \(D \).

For each \(t \in (a, b) - D \), application of Lemma 4.3 yields an \(\varepsilon/3 \)-retraction \(r_t \) of \(X_t \) onto the \(A_t \) associated (by Lemma 4.3B) with \(t \) and \(\varepsilon/3 \), where \(\Sigma \cap A_t = \Sigma_{s(t)} \cup \Sigma_{u(t)} \). Let \(\pi \) denote the projection of \(E^n \times E^1 \) onto the second factor. Then \(\pi(\Sigma \cap f_0(\Delta^2)) \), a subset of \((a, b) - D \), is covered by the collection \(\mathcal{C} \) of open intervals \(\mathcal{C} = \{(s(t), u(t)) \mid t \in \pi(\Sigma \cap f_0(\Delta^2))\} \), from which we can extract a finite sub-covering \(\mathcal{F} \) of \(\pi(\Sigma \cap f_0(\Delta^2)) \). After eliminating unnecessary elements of \(\mathcal{F} \), we can regard \(\mathcal{F} \) as the union of two (finite) collections \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) such that for \(i = 1, 2 \) no two elements of \(\mathcal{F}_i \) intersect. Let \(F_1 \) and \(F_2 \) denote the underlying point sets of \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) respectively.

In case \((s(t), u(t)) \in \mathcal{F}_1 \), the addendum to Lemma 4.3 implies the existence of an \(\varepsilon/3 \) map \(R_t \) of \(X_t \cap f_0(\Delta^2) \) into \(A_t \) such that

4. \(R_t(X_t \cap f_0(\Delta^2)) \cap \text{Bd} A_t \subset X_t \cap f_0(\Delta^2) \),
5. \(R_t|_{f_0(\Delta^2) \cap A_t = \text{identity} \).

Define a map \(f_1: \Delta^2 \to \text{Cl} U \) by the rule

\[
f_1(x) = \begin{cases} R_t f_0(x), & \text{if } f_0(x) \in X_t \text{ and } (s(t), u(t)) \in \mathcal{F}_1, \\ f_0(x), & \text{otherwise.} \end{cases}
\]
It follows from (5) and the fact that the X_t's considered are pairwise disjoint that f_t is well defined and continuous. Note that

$$(6) f_t|\partial \Delta^2 = f_0|\partial \Delta^2,$$

$$(7) \rho(f_0, f_t) < \epsilon/3,$$

$$(8) \pi(\Sigma \cap f_t(\Delta^2)) \subset F_0.$$

Similarly, in case $(s(t), u(t)) \in \mathcal{F}_0$, the addendum to Lemma 4.3 implies the existence of an $\epsilon/3$-map R_t of $X_t \cap f_t(\Delta^2)$ into A_t such that

$$(9) R_t(X_t \cap f_t(\Delta^2)) \cap \text{Bd} \ A_t = \varnothing,$$

$$(10) R_t|f_t(\Delta^2) \cap A_t = \text{identity}.$$

Define $f_2 : \Delta^2 \to \text{Cl} \ U$ by the rule

$$f_2(x) = \begin{cases} R_t f_t(x), & \text{if } (s(t), u(t)) \in \mathcal{F}_0, \\ f_t(x), & \text{otherwise.} \end{cases}$$

As before, f_2 is a continuous function satisfying

$$(11) f_2|\partial \Delta^2 = f_1|\partial \Delta^2,$$

$$(12) \rho(f_1, f_2) < \epsilon/3,$$

$$(13) f_2(\Delta^2) \cap \Sigma = \varnothing.$$

Since $f_2|\partial \Delta^2 = f_1|\partial \Delta^2$ and $\rho(f_1, f_2) < \epsilon$, it follows immediately that U is 1-LC at each point of $\Sigma(a,b)$.

REMARKS. Although condition (ii) clearly is a necessary hypothesis for Theorem 5.1, one questions whether it might be superfluous. Even without this condition it follows from [4], by means of the trick emerging here in Lemma 4.1, that $\text{Cl} \ U - \Sigma_t$ is 1-LC at each point of Σ_t for all but at most countably many points t in (a, b), but this fact, obviously, is no help. By attacking the problem differently in the next section, we shall prove, under the hypotheses of Theorem 5.1 without condition (ii), that U is 1-LC at many points of Σ (see Corollary 6.2).

Without much extra effort one can prove the following slightly stronger version of Theorem 5.1. Statements of the other results in this section can be altered in a similar manner.

Theorem 5.2. Let Σ denote an n-manifold embedded in E^{n+1} ($n \neq 4$) as a closed subset, U a component of $E^{n+1} - \Sigma$, and (a, b) an interval such that (i) for each $t \in (a, b)$, $\text{Cl} \ U - \Sigma_t$ is 1-LC at each point of Σ_t and (ii) for all but countably many points t in (a, b), Σ_t is a closed, PL $(n-1)$-manifold that is collared from U_t. Then U is 1-LC at each point of $\Sigma(a,b)$.

Proof. Simply incorporate those countably many t's of (a, b) that fail to satisfy condition (ii) into the set \mathcal{D} and reapply the proof of Theorem 5.1.

Theorem 5.3. Let Σ denote an n-manifold embedded in E^{n+1} ($n \neq 4$) as a closed subset, U a component of $E^{n+1} - \Sigma$, and (a, b) an interval such that for each $t \in (a, b)$ (i) Σ_t is a closed, PL $(n-1)$-manifold that is collared from U_t and (ii) $\Sigma - \Sigma_t$ is 1-LC at each point of Σ_t. Then U is 1-LC at each point of $\Sigma(a,b)$.
Proof. Let p be a point of Σ and $\epsilon > 0$. There exists a $\delta > 0$ such that any loop in $N_\delta(p) \cap (\Sigma - \Sigma_i)$ is contractible in $N_\delta(p) \cap (\Sigma - \Sigma_i)$. Since U is locally 1-connected at p in the homology sense [17, Theorem II, 5.35], it follows from [6, Proposition 3.3] that there exists an $\alpha > 0$ such that any loop in $N_\alpha(p) \cap U$ is contractible in $N_\alpha(p) \cap (E^{n+1} - \Sigma)$. By cutting off such a contraction in $\Sigma - \Sigma_i$ one can show that each loop in $N_\alpha(p) \cap U$ is contractible in $N_\alpha(p) \cap (\Sigma - \Sigma_i)$. Using this property one easily can prove that $\text{Cl} \, U - \Sigma_i$ is 1-CL at p. Hence, Theorem 5.1 gives the desired result.

Theorem 5.4. Let Σ denote a closed n-manifold in E^{n+1} $(n \neq 4)$, U a component of $E^{n+1} - \Sigma$, and $[a, b]$ the interval such that $\Sigma = \Sigma([a, b])$. Suppose that for each t in (a, b), Σ_t is a closed PL $(n-1)$-manifold that is collared from U_t and that for each t in $[a, b]$, $\text{Cl} \, U - \Sigma_t$ is 1-ULC. Then U is 1-ULC.

Proof. Obviously U is 1-CL at points of $\Sigma(a, b)$. Furthermore, by hypothesis, any small loop in U near a point of Σ_0 is contractible in a small subset of $\text{Cl} \, U - \Sigma_0$. According to Theorem 3.2 such a contraction can be modified slightly so that the range of the resulting map is a small subset of U. Thus, U is 1-CL at points of Σ_0. The same argument applies to points of Σ_0. Consequently, U is 1-ULC.

Using Theorem 5.4 one can extend results of [11] and [12] to higher dimensions in the following ways.

Corollary 5.5. Suppose Σ is a closed n-manifold in E^{n+1} $(n \neq 4)$ such that (i) $\Sigma = \Sigma([-1, 1])$, (ii) $\Sigma - (\Sigma_{-1} \cup \Sigma_1)$ is 1-ULC, and (iii) for each $t \in (-1, 1)$, Σ_t is a closed, PL $(n-1)$-manifold bicollected in E_t and $\Sigma - \Sigma_t$ is 1-ULC. Then $E^{n+1} - \Sigma$ is 1-ULC.

Proof. For either component U of $E^{n+1} - \Sigma$ and each $t \in [-1, 1]$, the proof of Theorem 5.3 indicates that $\text{Cl} \, U - \Sigma_t$ is 1-ULC. Although the hypotheses of Proposition 3.3 of [6] do not apply when $t = \pm 1$, the argument there can be used to establish the property employed in proving Theorem 5.3, namely, for each $\delta > 0$ there exists an $\alpha > 0$ such that each α-loop in U is contractible in a δ-subset of $E^{n+1} - \Sigma_t (t \neq \pm 1)$.

Corollary 5.6. Suppose Σ is an n-sphere in E^{n+1} $(n \neq 4)$ such that both Σ_1 and Σ_{-1} are points and, for each $t \in (-1, 1)$, Σ_t is an $(n-1)$-sphere bicollected in E_t and $\Sigma - \Sigma_t$ is 1-ULC. Then $E^{n+1} - \Sigma$ is 1-ULC.

From Theorem 9 of [16] we obtain the following flatness conditions.

Theorem 5.7. Suppose Σ is a closed PL n-manifold in E^{n+1} $(n \geq 5)$ satisfying the hypothesis of Corollary 5.5. Then Σ is locally flat if and only if Σ can be homeomorphically approximated by locally flat manifolds.

Theorem 5.8. Let Σ denote the boundary of an $(n+1)$-cell B in E^{n+1} $(n \geq 5)$ and U the complement of B. Suppose (i) $\Sigma = \Sigma([a, b])$, (ii) for each $t \in (a, b)$, Σ_t is a PL $(n-1)$-manifold that is collared from U_t, and (iii) for each $t \in [a, b]$, $\text{Cl} \, U - \Sigma_t$ is 1-ULC. Then Σ is locally flat.
6. Submanifolds of \(E^{n+1} \) whose levels satisfy 1-ULC conditions. In this section we give sufficient conditions, in the spirit of Cannon's work in \(E^3 \) [7], for a complementary domain of a closed \(n \)-manifold in \(E^{n+1} \) to be 1-ULC. In place of the hypothesis typical of the results found in §5 that the \(\Sigma_t \)'s be collared PL manifolds stands the weakened hypothesis that the \(U_t \)'s be 1-ULC, together with strong restrictions on the embeddings of the \(\Sigma_t \)'s in \(\Sigma \). As one advantage of this approach, the case \(n=4 \) need not be excluded.

Theorem 6.1. Suppose that \(\Sigma \) is a closed \(n \)-manifold in \(E^{n+1} \), \(Z \) a component of \(E^{n+1} - \Sigma \), and \((a, b)\) an interval such that (i) \(\Sigma_t = \operatorname{Bd} Z_t \) and (ii) \(Z_t \) is both 0-ULC and 1-ULC for each \(t \) in \((a, b)\). Then \((a, b)\) contains a dense \(G_\delta \)-subset \(G \) such that \(Z \) is 1-LC at each point of \(\Sigma(G) \).

Proof. Equivalently we shall show that the set \(F \) of levels \(t \) in \((a, b)\) at which \(Z_t \) fails to be 1-LC at \(q \) is a 0-dimensional \(F_\sigma \)-set.

For each positive integer \(n \) let \(X_n \) denote the set of points \(x \) in \(Z_t \) such that for no neighborhood \(V \) of \(x \) is every loop of \(V \cap Z \) contractible in a \((1/n)\)-subset of \(Z \). Then \(X_n \) is a compact subset of \(\Sigma_t \), and therefore \(\pi(X_n) \) is a closed subset of \(E^1 \), where \(\pi \) denotes the map projecting \(E^n \times E^1 \) onto the second factor. Define \(F_n \) as \((a, b) \cap \pi(X_n) \). Obviously \(F = \bigcup F_n \). Hence, we only need show \(F_n \) to be 0-dimensional.

Suppose to the contrary that some \(F_n \) contains a subinterval \([a', b']\) of \((a, b)\). By the Baire Category Theorem \([a', b']\) then contains a subinterval \([c, d]\) such that corresponding to some dense subset \(Y \) of \([c, d]\) there exists a positive number \(\delta \) with the property that each \(\delta \)-loop in \(Z_t \) is null homotopic in a \((1/3n)\)-subset of \(Z_t \) \((t \in Y)\). To reach the required contradiction we shall apply Hosay's argument [12] to prove that each point \(q \) of \(\Sigma(c, d) \) has a neighborhood \(V \) such that every loop in \(V \cap Z \) is null-homotopic in a \((1/n)\)-subset of \(Z \).

Given any such point \(q \) let \(U \) be a round open ball in \(E^{n+1} \) containing \(q \) of diameter less than \(\min \{\delta, 1/3n\} \). Assume further that \(U \) misses \(E_c \) and \(E_d \). Let \(V \) be a neighborhood of \(q \) such that \(V \subseteq U \) and \(V \cap \Sigma \) lies in an \(n \)-cell in \(U \cap (\Sigma - (\Sigma_c \cup \Sigma_d)) \). We must show that any map \(f \) of the boundary of a 2-cell \(D \) into \(V \cap Z \) has an extension \(g \) sending \(D \) into a \((1/n)\)-subset of \(Z \).

Using the notation developed in [12] we trace the argument given on pp. 371–373 there with certain modifications. First, replace part A by the following observation: the hypotheses that \(\Sigma_t = \operatorname{Bd} Z_t \) and \(Z_t \) is 0-ULC imply that there exists an arc in \(U \cap Z_t \) connecting each pair of points of \(h(A_t) \cap f(\partial D) \). Let \(K_t \) denote the union of the (finitely many) arcs obtained in this way. Second, in part B observe that the special levels (the \(r \)'s) can be chosen from \(Y \), since \(Y \) is dense in \([c, d]\). The last two paragraphs of B may be ignored, noting instead that any map of a simple closed curve into

\[
(K_t^1 \cup K_t^{n+1} \cup h(\partial D)) \cap \{ E_t | t_t \leq t \leq t_{t+1} \}
\]
is homotopic, in the intersection of \(Z \) and the \((1/3n)\)-neighborhood of \(U \), to a constant map. Making use of this fact at the end of part D, we can construct the required extension \(g \) sending \(D \) into \(Z \).

Corollary 6.2. Suppose that \(\Sigma \) is a closed \(n \)-manifold in \(E^{n+1} \), \(U \) a component of \(E^{n+1} - \Sigma \), and \((a, b)\) an interval such that for each \(t \in (a, b) \), \(\Sigma_t \) is a closed \((n-1)\)-manifold that is collared from \(U \). Then \((a, b)\) contains a dense \(G_\delta \)-subset \(G \) such that \(U \) is 1-LC at each point of \(\Sigma(G) \).

Theorem 6.3. Suppose that \(\Sigma \) is a closed \(n \)-manifold in \(E^{n+1} \), \(Z \) a component of \(E^{n+1} - \Sigma \), and \((a, b)\) an interval such that (i) \(Cl \{ Z \} - \Sigma \) is 1-ULC and (ii) \(Z_t \) is 1-ULC for each \(t \) in \((a, b)\). Then \((a, b)\) contains a dense \(G_\delta \)-subset \(G \) such that \(Z \) is 1-LC at each point of \(\Sigma(G) \).

Proof. We begin by repeating the first three paragraphs of the proof of Theorem 6.1. Then, with minor modifications similar to those given in the preceding proposition, Cannon's argument [7, Theorem 1] can be applied to complete the proof.

It would be interesting to know whether the hypotheses of either Theorem 6.1 or 6.3 actually imply that \(Z \) is 1-LC at each point of \(\Sigma(a, b) \). One should note that some restrictions on the set \(Z \) are necessary, for it is quite simple to describe a connected open subset \(Z \) of \(E^{n+1} \) \((n \geq 2)\) such that each \(Z_t \) is 1-ULC but \(Z \) fails to be 1-LC at certain points of \(Bd Z \). In particular, a bounded open subset \(Z \) of \(E^{n+1} \) \((n \geq 2)\) need not be 1-ULC even if each \(Z_t \) is 1-ULC.

Theorem 6.4. Suppose \(\Sigma \) is a closed \(n \)-manifold in \(E^{n+1} \), \(U \) a component of \(E^{n+1} - \Sigma \), and \((a, b)\) an interval such that (1) for each \(t \in (a, b) \), \(U_t \) is 1-ULC and (2) for each compact 0-dimensional subset \(C \) of \((a, b) \), \(Cl U - \Sigma(C) \) is 1-ULC. Then \(U \) is 1-LC at each point of \(\Sigma(a, b) \).

Proof. Let \(f \) be a map of the disk \(\Delta^2 \) into \(Cl U \) such that \(f(\partial \Delta^2) \subseteq U \) and \(f(\Delta^2) \cap \Sigma \subseteq \Sigma(a, b) \). If \(G \) denotes the dense \(G_\delta \)-subset of \((a, b)\) promised by Theorem 6.3, then from hypothesis (2) above and Theorem 3.2 we find that \(f \) can be adjusted slightly, not changing the map on \(\partial \Delta^2 \), such that \(f(\Delta^2) \cap \Sigma \subseteq \Sigma(G) \) and \(f^{-1}(\Sigma \cap f(\Delta^2)) \) is 0-dimensional. As a result, \(U \) is 1-LC at each point of \(\Sigma \cap f(\Delta^2) \), and it is then a simple matter to alter \(f \) further so that \(f(\Delta^2) \) misses \(\Sigma \) entirely. Hence, \(U \) is 1-LC at each point of \(\Sigma(a, b) \).

Corollary 6.5. Suppose \(\Sigma \) is a closed \(n \)-manifold in \(E^{n+1} \) such that each component \(U \) of \(E^{n+1} - \Sigma \) satisfies (1) for each \(t \in E^1 \), \(U_t \) is 1-ULC and (2) for each compact, 0-dimensional subset \(C \) of \(E^1 \), \(Cl U - \Sigma(C) \) is 1-ULC. Then \(E^{n+1} - \Sigma \) is 1-ULC.

Corollary 6.5 can be interpreted as a generalization of [7, Corollary 3].

Remark. Variations on Theorem 6.4 and Corollary 6.5 can be obtained by exchanging condition (2) in each for the following condition:

(2*) for each compact 0-dimensional subset \(C \) of \((a, b)\), or \(E^1 \), as the context requires, \(\Sigma - \Sigma(C) \) is 1-ULC.
The proof given for Theorem 2 of [7] establishes that to each $\delta > 0$ there corresponds an $\alpha > 0$ such that each α-loop in U is contractible in an ε-subset of $E^{n+1} - \Sigma(C)$. Using this we can prove, as in Theorem 5.3, that $Cl U - \Sigma(C)$ is 1-ULC.

Finally, Corollary 6.5 and [16, Theorem 9] can be combined, as in §5, to produce a local flatness criterion.

Theorem 6.6. Suppose Σ is a closed PL n-manifold in E_{n+1} ($n \geq 4$) satisfying the hypotheses of Corollary 6.5. Then Σ is locally flat if and only if Σ can be homeomorphically approximated by locally flat manifolds.

References

6. ———, Euclidean n-space modulo an $(n-1)$-cell (to appear).

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916