Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Slicing theorems for $ n$-spheres in Euclidean $ (n+1)$-space


Author: Robert J. Daverman
Journal: Trans. Amer. Math. Soc. 166 (1972), 479-489
MSC: Primary 57A35
DOI: https://doi.org/10.1090/S0002-9947-1972-0295356-4
MathSciNet review: 0295356
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes conditions on the intersection of an n-sphere $ \Sigma $ in Euclidean $ (n + 1)$-space $ {E^{n + 1}}$ with the horizontal hyperplanes of $ {E^{n + 1}}$ sufficient to determine that the sphere be nicely embedded. The results generally are pointed towards showing that the complement of $ \Sigma $ is 1-ULC (uniformly locally 1-connected) rather than towards establishing the stronger property that $ \Sigma $ is locally flat. For instance, the main theorem indicates that $ {E^{n + 1}} - \Sigma $ is 1-ULC provided each non-degenerate intersection of $ \Sigma $ and a horizontal hyperplane be an $ (n - 1)$-sphere bicollared both in that hyperplane and in $ \Sigma $ itself $ (n \ne 4)$.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
  • [2] R. H. Bing, $ {E^3}$ does not contain uncountably many mutually exclusive surfaces, Bull. Amer. Math. Soc. 63 (1957), 404. Abstract #60-801t.
  • [3] -, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 28 #3408. MR 0160194 (28:3408)
  • [4] J. L. Bryant, Concerning uncountable families of n-cells in $ {E^n}$, Michigan Math. J. 15 (1968), 477-479. MR 38 #6561. MR 0238285 (38:6561)
  • [5] -, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc. 155 (1971), 327-332. MR 0276983 (43:2721)
  • [6] -, Euclidean n-space modulo an $ (n - 1)$-cell (to appear).
  • [7] J. W. Cannon, $ ^ \ast $-taming sets for crumpled cubes. II. Horizontal sections in closed sets, Trans. Amer. Math. Soc. 161 (1971), 441-446. MR 0282354 (43:8066)
  • [8] J. Cheegar and J. M. Kister, Counting topological manifolds, Topology 9 (1970), 149-151. MR 41 #1055. MR 0256399 (41:1055)
  • [9] Robert Craggs, Small ambient isotopies of a 3-manifold which transform one embedding of a polyhedron into another, Fund. Math. 68 (1970), 225-256. MR 0275440 (43:1196)
  • [10] C. H. Dowker, Mapping theorem for non-compact spaces, Amer. J. Math. 69 (1947), 200-242. MR 8, 594. MR 0020771 (8:594g)
  • [11] W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375-378. MR 39 #957. MR 0239600 (39:957)
  • [12] Norman Hosay, A proof of the slicing theorem for 2-spheres, Bull. Amer. Math. Soc. 75 (1969), 370-374. MR 39 #956. MR 0239599 (39:956)
  • [13] R. A. Jensen, Cross sectionally connected 2-spheres are tame, Bull. Amer. Math. Soc. 76 (1970), 1036-1038. MR 0270352 (42:5241)
  • [14] J. M. Kister, Isotopies in 3-manifolds, Trans. Amer. Math. Soc. 97 (1960), 213-224. MR 22 #11378. MR 0120628 (22:11378)
  • [15] L. D. Loveland, Cross sectionally continuous spheres in $ {E^3}$, Bull. Amer. Math. Soc. 75 (1969), 396-397. MR 39 #958. MR 0239601 (39:958)
  • [16] C. L. Seebeck, III, Collaring an $ (n - 1)$-manifold in an n-manifold, Trans. Amer. Math. Soc. 148 (1970), 63-68. MR 41 #2692. MR 0258045 (41:2692)
  • [17] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc., Providence, R. I., 1963. MR 32 #440. MR 0182958 (32:440)
  • [18] Perrin Wright, A uniform generalized Schoenflies theorem, Bull. Amer. Math. Soc. 74 (1968), 718-721. MR 37 #4799. MR 0229225 (37:4799)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A35

Retrieve articles in all journals with MSC: 57A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0295356-4
Keywords: Horizontal hyperplane of Euclidean space, bicollared submanifold, locally flat submanifold, locally simply connected, homeomorphic approximation, topological embedding
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society