Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Polars and their applications in directed interpolation groups


Author: A. M. W. Glass
Journal: Trans. Amer. Math. Soc. 166 (1972), 1-25
MSC: Primary 06A55
DOI: https://doi.org/10.1090/S0002-9947-1972-0295991-3
MathSciNet review: 0295991
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the study of l-groups, as in many other branches of mathematics, use is made of the concept of ``orthogonal elements". The purpose of this paper is to show that this concept can be extended to directed, interpolation groups and that most of the theorems in l-groups concerning polars hold in the more general setting of directed, interpolation groups. As consequences, generalisations of Holland's and Lorenzen's theorems are obtained and a result on o-simple abelian, directed, interpolation groups.


References [Enhancements On Off] (What's this?)

  • [1] B. Banaschewski, On lattice-ordered groups, Fund. Math. 55 (1964), 113-122. MR 29 #5930. MR 0168672 (29:5930)
  • [2] R. D. Byrd, Lattice-ordered groups, Ph.D. Dissertation, Tulane University, New Orleans, La., 1966.
  • [3] -, M-polars in lattice-ordered groups, Czechoslovak Math. J. 18 (93) (1968), 230-239. MR 37 #2651. MR 0227066 (37:2651)
  • [4] R. D. Byrd, P. F. Conrad and J. T. Lloyd, Characteristic subgroups of lattice-ordered groups, Trans. Amer. Math. Soc. 158 (1971), 339-371. MR 0279014 (43:4740)
  • [5] A. H. Clifford, A noncommutative ordinally simple linearly ordered group, Proc. Amer. Math. Soc. 2 (1952), 902-903. MR 13, 625. MR 0045739 (13:625a)
  • [6] P. F. Conrad, Embedding theorems for abelian groups with valuations, Amer. J. Math. 75 (1953), 1-29. MR 14, 842. MR 0053933 (14:842f)
  • [7] P. F. Conrad, J. Harvey and C. Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143-169. MR 27 #1519. MR 0151534 (27:1519)
  • [8] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York; Addison-Wesley, Reading, Mass., 1963. MR 30 #2090. MR 0171864 (30:2090)
  • [9] -, Riesz groups, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 1-34. MR 31 #4843. MR 0180609 (31:4843)
  • [10] A. M. W. Glass, Which abelian groups can support a directed, interpolation order?, Proc. Amer. Math. Soc. 31 (1972), 395-400. MR 0289389 (44:6580)
  • [11] -, The lattice of convex directed subgroups of a directed, interpolation group (unpublished paper($ ^{1}$)).
  • [12] P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595-622. MR 22 #1618. MR 0110750 (22:1618)
  • [13] C. Holland, The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399-408. MR 28 #1237. MR 0158009 (28:1237)
  • [14] P. Jaffard, Sur le spectre d'un groupe réticulé et l'unicité des réalisations irréductibles, Ann. Univ. Lyon. Sect. A (3) 22 (1959), 43-47. MR 22 #6853. MR 0116058 (22:6853)
  • [15] P. Lorenzen, Abstrakte Begründung der multiplikativen Idealtheorie, Math. Z. 45 (1939), 533-553. MR 1, 101. MR 0000604 (1:101c)
  • [16] D. Papert, A representation theory for lattice-groups, Proc. London Math. Soc. (3) 12 (1962), 100-120. MR 24 #A3217. MR 0133383 (24:A3217)
  • [17] J. R. Teller, A theorem on Riesz groups, Trans. Amer. Math. Soc. 130 (1968), 254-264. MR 37 #120. MR 0224521 (37:120)
  • [18] E. C. Weinberg, Embedding in a divisible lattice-ordered group, J. London Math. Soc. 42 (1967), 504-506. MR 36 #91. MR 0216996 (36:91)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A55

Retrieve articles in all journals with MSC: 06A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0295991-3
Keywords: Carrier, convex directed subgroup, directed, interpolation property, antilattice, polar, prime subgroup, prime filter, bipolar, representable directed, interpolation group
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society